Your Location:
Home >
Browse articles >
An attention mechanism-based multi-domain feature fusion approach for active sonar target recognition
Regular Papers | Updated:2026-02-11
    • An attention mechanism-based multi-domain feature fusion approach for active sonar target recognition

      Enhanced Publication
    • 一种基于注意力机制的主动声呐目标多域特征融合识别方法
    • In the field of underwater acoustics, researchers have made significant progress in active sonar target recognition. They proposed an attention mechanism-based multi-domain feature fusion approach, using 1DCNN-LSTM and 2DCNN with channel attention to extract deep features. This method effectively eliminates redundant information and enhances feature representation, showing superior performance and stable generalization ability in low signal-clutter ratio scenarios.
    • ENGINEERING Information Technology & Electronic Engineering   Vol. 27, Issue 2, Pages: 1-12(2026)
    • DOI:10.1631/ENG.ITEE.2025.0177    

      CLC: TP183;TN911.7
    • Received:13 December 2025

      Revised:2026-01-13

      Published:2026-02

    Scan QR Code

  • Tongjing SUN, Haoran XU, Shishuo REN, et al. An attention mechanism-based multi-domain feature fusion approach for active sonar target recognition[J]. ENGINEERING Information Technology & Electronic Engineering, 2026, 27(2): 1-12. DOI: 10.1631/ENG.ITEE.2025.0177.

  •  
  •  

0

Views

2

Downloads

0

CSCD

>
Alert me when the article has been cited
Submit
Tools
Download
Export Citation
Share
Add to favorites
Add to my album

Related Articles

CdualTAL: multi-domain tool wear prediction using a dual-channel Transformer and cross-attention network
Proton exchange membrane fuel cell voltage-tracking using artificial neural networks
A tracking and predicting scheme for ping pong robot

Related Author

Xuedian Zhang
Songwen Pei
Changxiang He
Chen Xiao
Wenkai Hu
Xiaofei Qin
Yanjie WEI
Jiamin JIANG

Related Institution

Shanghai Institute of Intelligent Science and Technology, Tongji University
Key Laboratory of Biomedical Optical Technology and Devices of Ministry of Education
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology
College of Science, University of Shanghai for Science and Technology
Shanghai Key Laboratory of Contemporary Optics System
0