FOLLOWUS
1.State Key Laboratory for Turbulence and Complex Systems, Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing 100871, China
2.National Innovation Institute of Defense Technology, Beijing 100071, China
‡Corresponding authors
Published:0 August 2023,
Received:23 November 2022,
Accepted:2023-04-24
Scan QR Code
ZHENXIN MU, JIE PAN, ZIYE ZHOU, et al. A survey of the pursuit–evasion problem in swarm intelligence. [J]. Frontiers of information technology & electronic engineering, 2023, 24(8): 1093-1116.
ZHENXIN MU, JIE PAN, ZIYE ZHOU, et al. A survey of the pursuit–evasion problem in swarm intelligence. [J]. Frontiers of information technology & electronic engineering, 2023, 24(8): 1093-1116. DOI: 10.1631/FITEE.2200590.
对于人工系统中涌现出的复杂功能,理解自然界中生物群体行为的内在机制至关重要。本文对生物集群中的一个关键问题—追逃围捕问题进行了全面的综述。首先,从博弈论、控制论与人工智能、生物启发3个不同视角对追逃围捕问题进行了回顾。然后,概述了生物系统和人工系统中追逃围捕问题研究进展,其中捕食者的追捕行为和猎物的逃避行为被概括为捕食者—猎物行为。之后,分别从强追捕者组vs.弱逃避者组、弱追捕者组vs.强逃避者组、相同能力组3个角度分析追逃围捕问题在人工系统中的应用。最后,讨论了未来追逃围捕问题面临的挑战和发展展望。本文为多智能体系统和多机器人系统在不确定动态场景下完成复杂狩猎任务的设计提供了新的见解。
For complex functions to emerge in artificial systems
it is important to understand the intrinsic mechanisms of biological swarm behaviors in nature. In this paper
we present a comprehensive survey of pursuit–evasion
which is a critical problem in biological groups. First
we review the problem of pursuit–evasion from three different perspectives: game theory
control theory and artificial intelligence
and bio-inspired perspectives. Then we provide an overview of the research on pursuit–evasion problems in biological systems and artificial systems. We summarize predator pursuit behavior and prey evasion behavior as predator–prey behavior. Next
we analyze the application of pursuit–evasion in artificial systems from three perspectives
i.e.
strong pursuer group vs. weak evader group
weak pursuer group vs. strong evader group
and equal-ability group. Finally
relevant prospects for future pursuit–evasion challenges are discussed. This survey provides new insights into the design of multi-agent and multi-robot systems to complete complex hunting tasks in uncertain dynamic scenarios.
群体行为追逃问题人工系统生物模型群集运动
Swarm behaviorPursuit–evasionArtificial systemsBiological modelCollective motion
Analikwu CV, Schwartz HM, 2017. Multi-agent learning in the game of guarding a territory. Int J Innov Comput Inform Contr, 13(6):1855-1872. doi: 10.24507/ijicic.13.06.1855http://doi.org/10.24507/ijicic.13.06.1855
Angelani L, 2012. Collective predation and escape strategies. Phys Rev Lett, 109(11):118104. doi: 10.1103/PhysRevLett.109.118104http://doi.org/10.1103/PhysRevLett.109.118104
Barawkar S, Kumar M, 2021. Ant-inspired strategies for multi-robot collaborative transportation—an Ockham’s razor. IFAC-PapersOnLine, 54(20):789-794. doi: 10.1016/j.ifacol.2021.11.268http://doi.org/10.1016/j.ifacol.2021.11.268
Battistini S, 2020. A stochastic characterization of the capture zone in pursuit-evasion games. Games, 11(4):54. doi: 10.3390/g11040054http://doi.org/10.3390/g11040054
Beaver LE, Malikopoulos AA, 2021. An overview on optimal flocking. Ann Rev Contr, 51:88-99. doi: 10.1016/j.arcontrol.2021.03.004http://doi.org/10.1016/j.arcontrol.2021.03.004
Bedoya-Pérez MA, Le A, McGregor IS, et al., 2021. Anti-predator responses toward cat fur in wild brown rats tested in a semi-natural environment. Behav Ecol, 32(5):835-844. doi: 10.1093/beheco/arab038http://doi.org/10.1093/beheco/arab038
Benda M, Jagannathan V, Dodhiawala R, 1986. On Optimal Cooperation of Knowledge Sources: an Empirical Investigation. Technical Report BCS-G2010-28, Boeing Advanced Technology Center, Washington, USA.
Blanchard BS, Fabrycky WJ, Fabrycky WJ, 1990. Systems Engineering and Analysis. Prentice Hall Upper Saddle River, USA.
Bravo L, Ruiz U, Murrieta-Cid R, 2020. A pursuit–evasion game between two identical differential drive robots. J Frankl Inst, 357(10):5773-5808. doi: 10.1016/j.jfranklin.2020.03.009http://doi.org/10.1016/j.jfranklin.2020.03.009
Bumann D, Krause J, Rubenstein D, 1997. Mortality risk of spatial positions in animal groups: the danger of being in the front. Behaviour, 134(13-14):1063-1076. doi: 10.1163/156853997X00403http://doi.org/10.1163/156853997X00403
Chakraborty D, Bhunia S, De RM, 2020. Survival chances of a prey swarm: how the cooperative interaction range affects the outcome. Sci Rep, 10(1):8362. doi: 10.1038/s41598-020-64084-3http://doi.org/10.1038/s41598-020-64084-3
Chen J, Zha WZ, Peng ZH, et al., 2016. Multi-player pursuit–evasion games with one superior evader. Automatica, 71:24-32. doi: 10.1016/j.automatica.2016.04.012http://doi.org/10.1016/j.automatica.2016.04.012
Chiu C, Reddy PV, Xian W, et al., 2010. Effects of competitive prey capture on flight behavior and sonar beam pattern in paired big brown bats, Eptesicus fuscus. J Exp Biol, 213(19):3348-3356. doi: 10.1242/jeb.044818http://doi.org/10.1242/jeb.044818
Cichos F, Gustavsson K, Mehlig B, et al., 2020. Machine learning for active matter. Nat Mach Intell, 2(2):94-103. doi: 10.1038/s42256-020-0146-9http://doi.org/10.1038/s42256-020-0146-9
Civitello DJ, Cohen J, Fatima H, et al., 2015. Biodiversity inhibits parasites: broad evidence for the dilution effect. Proc Nat Acad Sci USA, 112(28):8667-8671. doi: 10.1073/pnas.1506279112http://doi.org/10.1073/pnas.1506279112
Couzin ID, Krause J, James R, et al., 2002. Collective memory and spatial sorting in animal groups. J Theor Biol, 218(1):1-11. doi: 10.1006/jtbi.2002.3065http://doi.org/10.1006/jtbi.2002.3065
Couzin ID, Krause J, Franks NR, et al., 2005. Effective leadership and decision-making in animal groups on the move. Nature, 433(7025):513-516. doi: 10.1038/nature03236http://doi.org/10.1038/nature03236
Dai H, Lu W, Li X, et al.2022. Cooperative planning of multi-agent systems based on task-oriented knowledge fusion with graph neural networks. Front Inform Technol Electron Eng, 23(7):1069-1076. doi: 10.1631/FITEE.2100597http://doi.org/10.1631/FITEE.2100597
Deng W, Xu JJ, Song YJ, et al., 2020. An effective improved co-evolution ant colony optimisation algorithm with multi-strategies and its application. Int J Bio-Inspired Comput, 16(3):158-170. doi: 10.1504/IJBIC.2020.111267http://doi.org/10.1504/IJBIC.2020.111267
de Souza C, Newbury R, Cosgun A, et al., 2021. Decentralized multi-agent pursuit using deep reinforcement learning. IEEE Robot Autom Lett, 6(3):4552-4559. doi: 10.1109/LRA.2021.3068952http://doi.org/10.1109/LRA.2021.3068952
Dong J, Zhang X, Jia XM, 2012. Strategies of pursuit-evasion game based on improved potential field and differential game theory for mobile robots. Proc 2nd Int Conf on Instrumentation, Measurement, Computer, Communication and Control, p.1452-1456. doi: 10.1109/IMCCC.2012.340http://doi.org/10.1109/IMCCC.2012.340
Dong Q, Wu ZY, Lu J, et al., 2022. Existence and practice of gaming: thoughts on the development of multi-agent system gaming. Front Inform Technol Electron Eng, 23(7):995-1001. doi: 10.1631/FITEE.2100593http://doi.org/10.1631/FITEE.2100593
Duffield C, Ioannou CC, 2017. Marginal predation: do encounter or confusion effects explain the targeting of prey group edges?Behav Ecol, 28(5):1283-1292. doi: 10.1093/beheco/arx090http://doi.org/10.1093/beheco/arx090
Durgut R, 2021. Improved binary artificial bee colony algorithm. Front Inform Technol Electron Eng, 22(8):1080-1091. doi: 10.1631/FITEE.2000239http://doi.org/10.1631/FITEE.2000239
Dutta K, 2014. Hunting in groups. Resonance, 19(10):936-957. doi: 10.1007/s12045-014-0109-8http://doi.org/10.1007/s12045-014-0109-8
Emmons M, Maciejewski AA, Chong EKP, 2018. Modelling emergent swarm behavior using continuum limits for environmental mapping. Proc IEEE 14th Int Conf on Control and Automation, p.86-93. doi: 10.1109/ICCA.2018.8444337http://doi.org/10.1109/ICCA.2018.8444337
Emmons M, Maciejewski AA, Anderson C, et al., 2020. Classifying environmental features from local observations of emergent swarm behavior. IEEE/CAA J Autom Sin, 7(3):674-682. doi: 10.1109/JAS.2020.1003129http://doi.org/10.1109/JAS.2020.1003129
Estes RD, 2012. The Behavior Guide to African Mammals: Including Hoofed Mammals, Carnivores, Primates. University of California Press, Berkeley, USA.
Fang X, Wang C, Xie LH, et al., 2022. Cooperative pursuit with multi-pursuer and one faster free-moving evader. IEEE Trans Cybern, 52(3):1405-1414. doi: 10.1109/TCYB.2019.2958548http://doi.org/10.1109/TCYB.2019.2958548
Fregene K, Kennedy D, Wang D, 2003. Multi-vehicle pursuit–evasion: an agent-based framework. Proc IEEE Int Conf on Robotics and Automation, p.2707-2713. doi: 10.1109/ROBOT.2003.1242002http://doi.org/10.1109/ROBOT.2003.1242002
Gao KZ, Cao ZG, Zhang L, et al., 2019. A review on swarm intelligence and evolutionary algorithms for solving flexible job shop scheduling problems. IEEE/CAA J Autom Sin, 6(4):904-916. doi: 10.1109/JAS.2019.1911540http://doi.org/10.1109/JAS.2019.1911540
Garcia E, 2021. Cooperative target protection from a superior attacker. Automatica, 131:109696. doi: 10.1016/j.automatica.2021.109696http://doi.org/10.1016/j.automatica.2021.109696
Garcia E, Fuchs ZE, Milutinovic D, et al., 2017. A geometric approach for the cooperative two-pursuer one-evader differential game. IFAC-PapersOnLine, 50(1):15209-15214. doi: 10.1016/j.ifacol.2017.08.2366http://doi.org/10.1016/j.ifacol.2017.08.2366
Garcia E, Casbeer DW, Fuchs ZE, et al., 2018. Cooperative missile guidance for active defense of air vehicles. IEEE Trans Aerosp Electron Syst, 54(2):706-721. doi: 10.1109/TAES.2017.2764269http://doi.org/10.1109/TAES.2017.2764269
Gazi V, Passino KM, 2003. Stability analysis of swarms. IEEE Trans Autom Contr, 48(4):692-697. doi: 10.1109/TAC.2003.809765http://doi.org/10.1109/TAC.2003.809765
Haque M, Rahmani A, Egerstedt M, 2010. Geometric foraging strategies in multi-agent systems based on biological models. Proc 49th IEEE Conf on Decision and Control, p.6040-6045. doi: 10.1109/CDC.2010.5717805http://doi.org/10.1109/CDC.2010.5717805
Harras G, Tessone CJ, Sornette D, 2012. Noise-induced volatility of collective dynamics. Phys Rev E, 85(1):011150. doi: 10.1103/PhysRevE.85.011150http://doi.org/10.1103/PhysRevE.85.011150
Hayoun SY, Shima T, 2017. A two-on-one linear pursuit–evasion game with bounded controls. J Optim Theory Appl, 174(3):837-857. doi: 10.1007/s10957-017-1142-zhttp://doi.org/10.1007/s10957-017-1142-z
Heras FJH, Romero-Ferrero F, Hinz RC, et al., 2019. Deep attention networks reveal the rules of collective motion in zebrafish. PLoS Comput Biol, 15(9):e1007354. doi: 10.1371/journal.pcbi.1007354http://doi.org/10.1371/journal.pcbi.1007354
Hou ML, Ren J, Zhang D, et al., 2020. Network embedding: taxonomies, frameworks and applications. Comput Sci Rev, 38:100296. doi: 10.1016/j.cosrev.2020.100296http://doi.org/10.1016/j.cosrev.2020.100296
Hu RK, Tan N, Ni FL, 2021. A new scheme for cooperative hunting tasks with multiple targets in dynamic environments. Proc IEEE Int Conf on Robotics and Biomimetics, p.1816-1822. doi: 10.1109/ROBIO54168.2021.9739257http://doi.org/10.1109/ROBIO54168.2021.9739257
Huang LN, Zhu QY, 2022. A dynamic game framework for rational and persistent robot deception with an application to deceptive pursuit-evasion. IEEE Trans Autom Sci Eng, 19(4):2918-2932. doi: 10.1109/TASE.2021.3097286http://doi.org/10.1109/TASE.2021.3097286
Huang ZH, Chen YD, 2015. Log-linear model based behavior selection method for artificial fish swarm algorithm. Comput Intell Neurosci, 2015:685404. doi: 10.1155/2015/685404http://doi.org/10.1155/2015/685404
Hüttenrauch M, Šošić A, Neumann G, 2019. Deep reinforcement learning for swarm systems. J Mach Learn Res, 20(1):1966-1996.
Ilany A, Eilam D, 2008. Wait before running for your life: defensive tactics of spiny mice (Acomys cahirinus) in evading barn owl (Tyto alba) attack. Behav Ecol Sociobiol, 62(6):923-933. doi: 10.1007/s00265-007-0516-xhttp://doi.org/10.1007/s00265-007-0516-x
Ioannou CC, Guttal V, Couzin ID, 2012. Predatory fish select for coordinated collective motion in virtual prey. Science, 337(6099):1212-1215. doi: 10.1126/science.1218919http://doi.org/10.1126/science.1218919
Isaacs R, 1999. Differential Games: a Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization. Dover Publications, New York, USA.
Ishii H, Wang Y, Feng S, 2022. An overview on multi-agent consensus under adversarial attacks. Ann Rev Contr, 53:252-272. doi: 10.1016/j.arcontrol.2022.01.004http://doi.org/10.1016/j.arcontrol.2022.01.004
Isler V, Kannan S, Khanna S, 2006. Randomized pursuit-evasion with local visibility. SIAM J Discr Math, 20(1):26-41. doi: 10.1137/S0895480104442169http://doi.org/10.1137/S0895480104442169
Jadbabaie A, Lin J, Morse AS, 2003. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans Autom Contr, 48(6):988-1001. doi: 10.1109/TAC.2003.812781http://doi.org/10.1109/TAC.2003.812781
Jain M, Saihjpal V, Singh N, et al., 2022. An overview of variants and advancements of PSO algorithm. Appl Sci, 12(17):8392. doi: 10.3390/app12178392http://doi.org/10.3390/app12178392
Janosov M, Virágh C, Vásárhelyi G, et al., 2017. Group chasing tactics: how to catch a faster prey. New J Phys, 19(5):053003. doi: 10.1088/1367-2630/aa69e7http://doi.org/10.1088/1367-2630/aa69e7
Jiang YX, Wu Q, Zhu SK, et al., 2022. Orca predation algorithm: a novel bio-inspired algorithm for global optimization problems. Expert Syst Appl, 188:116026. doi: 10.1016/j.eswa.2021.116026http://doi.org/10.1016/j.eswa.2021.116026
Kamimura A, Ohira T, 2010. Group chase and escape. New J Phys, 12(5):053013. doi: 10.1088/1367-2630/12/5/053013http://doi.org/10.1088/1367-2630/12/5/053013
Kamimura A, Ohira T, 2019. Group Chase and Escape: Fusion of Pursuits-Escapes and Collective Motions. Springer, Singapore.
Kane SA, Fulton AH, Rosenthal LJ, 2015. When hawks attack: animal-borne video studies of goshawk pursuit and prey-evasion strategies. J Exp Biol, 218(2):212-222. doi: 10.1242/jeb.108597http://doi.org/10.1242/jeb.108597
Katsev M, Yershova A, Tovar B, et al., 2011. Mapping and pursuit-evasion strategies for a simple wall-following robot. IEEE Trans Robot, 27(1):113-128. doi: 10.1109/TRO.2010.2095570http://doi.org/10.1109/TRO.2010.2095570
Kawabayashi H, Chen YW, 2008. Interactive system of artificial fish school based on the extended boid model. Proc Int Conf on Intelligent Information Hiding and Multimedia Signal Processing, p.721-724. doi: 10.1109/IIH-MSP.2008.209http://doi.org/10.1109/IIH-MSP.2008.209
Kothari M, Manathara JG, Postlethwaite I, 2017. Cooperative multiple pursuers against a single evader. J Intell Robot Syst, 86(3-4):551-567. doi: 10.1007/s10846-016-0423-3http://doi.org/10.1007/s10846-016-0423-3
Krause J, 1993. The relationship between foraging and shoal position in a mixed shoal of roach (Rutilus rutilus) and chub (Leuciscus cephalus): a field study. Oecologia, 93(3):356-359. doi: 10.1007/BF00317878http://doi.org/10.1007/BF00317878
Li W, 2017. A dynamics perspective of pursuit-evasion: capturing and escaping when the pursuer runs faster than the agile evader. IEEE Trans Autom Contr, 62(1):451-457. doi: 10.1109/TAC.2016.2575008http://doi.org/10.1109/TAC.2016.2575008
Li ZY, Zhu H, Yang Z, et al., 2020. Saddle point of orbital pursuit-evasion game unde J2-perturbed dynamics. J Guid Contr Dyn, 43(9):1733-1739. doi: 10.2514/1.G004459http://doi.org/10.2514/1.G004459
Li ZY, Zhu H, Luo YZ, 2021. An escape strategy in orbital pursuit-evasion games with incomplete information. Sci China Technol Sci, 64(3):559-570. doi: 10.1007/s11431-020-1662-0http://doi.org/10.1007/s11431-020-1662-0
Lin ZY, Broucke M, Francis B, 2004. Local control strategies for groups of mobile autonomous agents. IEEE Trans Autom Contr, 49(4):622-629. doi: 10.1109/TAC.2004.825639http://doi.org/10.1109/TAC.2004.825639
Liu Y, Li Z, Jiang Z, et al., 2022. Prospects for multi-agent collaboration and gaming: challenge, technology, and application. Front Inform Technol Electron Eng, 23(7):1002-1009. doi: 10.1631/FITEE.2200055http://doi.org/10.1631/FITEE.2200055
Ma Y, Tsao D, Shum HY, 2022. On the principles of Parsimony and Self-consistency for the emergence of intelligence. Front Inform Technol Electron Eng, 23(9):1298-1323. doi: 10.1631/FITEE.2200297http://doi.org/10.1631/FITEE.2200297
Makkapati VR, Sun W, Tsiotras P, 2018. Optimal evading strategies for two-pursuer/one-evader problems. J Guid Contr Dyn, 41(4):851-862. doi: 10.2514/1.G003070http://doi.org/10.2514/1.G003070
Merz AW, 1972. The game of two identical cars. J Optim Theory Appl, 9(5):324-343. doi: 10.1007/BF00932932http://doi.org/10.1007/BF00932932
Mirjalili S, Mirjalili SM, Lewis A, 2014. Grey wolf optimizer. Adv Eng Softw, 69:46-61. doi: 10.1016/j.advengsoft.2013.12.007http://doi.org/10.1016/j.advengsoft.2013.12.007
Muro C, Escobedo R, Spector L, et al., 2011. Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behav Proc, 88(3):192-197. doi: 10.1016/j.beproc.2011.09.006http://doi.org/10.1016/j.beproc.2011.09.006
Nahin PJ, 2012. Chases and Escapes: the Mathematics of Pursuit and Evasion. Princeton University Press, Princeton, USA.
Neshat M, Sepidnam G, Sargolzaei M, et al., 2014. Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artif Intell Rev, 42(4):965-997. doi: 10.1007/s10462-012-9342-2http://doi.org/10.1007/s10462-012-9342-2
Nitschke G, 2005. Emergence of cooperation: state of the art. Artif Life, 11(3):367-396. doi: 10.1162/1064546054407194http://doi.org/10.1162/1064546054407194
Olfati-Saber R, 2006. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans Autom Contr, 51(3):401-420. doi: 10.1109/TAC.2005.864190http://doi.org/10.1109/TAC.2005.864190
Olfati-Saber R, Murray RM, 2004. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Autom Contr, 49(9):1520-1533. doi: 10.1109/TAC.2004.834113http://doi.org/10.1109/TAC.2004.834113
Olfati-Saber R, Fax JA, Murray RM, 2007. Consensus and cooperation in networked multi-agent systems. Proc IEEE, 95(1):215-233. doi: 10.1109/JPROC.2006.887293http://doi.org/10.1109/JPROC.2006.887293
Parker LE, 1994. Heterogeneous Multi-robot Cooperation. AITR-1465, Massachusetts Institute of Technology, Cambridge, USA.
Parrish JK, Viscido SV, Grünbaum D, 2002. Self-organized fish schools: an examination of emergent properties. Biol Bull, 202(3):296-305. doi: 10.2307/1543482http://doi.org/10.2307/1543482
Peterson AN, Soto AP, McHenry MJ, 2021. Pursuit and evasion strategies in the predator–prey interactions of fishes. Integr Comp Biol, 61(2):668-680. doi: 10.1093/icb/icab116http://doi.org/10.1093/icb/icab116
Pierson A, Wang ZJ, Schwager M, 2017. Intercepting rogue robots: an algorithm for capturing multiple evaders with multiple pursuers. IEEE Robot Autom Lett, 2(2):530-537. doi: 10.1109/LRA.2016.2645516http://doi.org/10.1109/LRA.2016.2645516
Pryor K, Norris KS, 1991. Dolphin Societies: Discoveries and Puzzles. University of California Press, Berkeley, USA.
Qi JT, Bai L, Xiao YD, et al., 2020. Group chase and escape of biological groups based on a visual perception-decision-propulsion model. IEEE Access, 8:160490-160499. doi: 10.1109/ACCESS.2020.3021078http://doi.org/10.1109/ACCESS.2020.3021078
Ramana MV, Kothari M, 2017. Pursuit-evasion games of high speed evader. J Intell Robot Syst, 85(2):293-306. doi: 10.1007/s10846-016-0379-3http://doi.org/10.1007/s10846-016-0379-3
Ren W, Beard RW, 2005. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans Autom Contr, 50(5):655-661. doi: 10.1109/TAC.2005.846556http://doi.org/10.1109/TAC.2005.846556
Ren W, Beard RW, Atkins EM, 2005. A survey of consensus problems in multi-agent coordination. Proc American Control Conf, p.1859-1864. doi: 10.1109/ACC.2005.1470239http://doi.org/10.1109/ACC.2005.1470239
Reynolds CW, 1987. Flocks, herds and schools: a distributed behavioral model. Proc 14th Annual Conf on Computer Graphics and Interactive Techniques, p.25-34. doi: 10.1145/37401.37406http://doi.org/10.1145/37401.37406
Rosenberg L, Willcox G, 2020. Artificial swarm intelligence. In: Bi YX, Bhatia R, Kapoor S (Eds.), Intelligent Systems and Applications. Springer, Cham, p.1054-1070. doi: 10.1007/978-3-030-29516-5_79http://doi.org/10.1007/978-3-030-29516-5_79
Rubenstein M, Cornejo A, Nagpal R, 2014. Programmable self-assembly in a thousand-robot swarm. Science, 345(6198):795-799. doi: 10.1126/science.1254295http://doi.org/10.1126/science.1254295
Sainz-Borgo C, Kofler S, Jaffe K, 2018. On the adaptive characteristics of bird flocks: small birds form mixed flocks. Ornitol Neotrop, 29(1):289-296. doi: 10.58843/ornneo.v29i1.303http://doi.org/10.58843/ornneo.v29i1.303
Savkin AV, 2004. Coordinated collective motion of groups of autonomous mobile robots: analysis of Vicsek’s model. IEEE Trans Autom Contr, 49(6):981-982. doi: 10.1109/TAC.2004.829621http://doi.org/10.1109/TAC.2004.829621
Schwarting W, Pierson A, Karaman S, et al., 2021. Stochastic dynamic games in belief space. IEEE Trans Robot, 37(6):2157-2172. doi: 10.1109/TRO.2021.3075376http://doi.org/10.1109/TRO.2021.3075376
Selvakumar J, Bakolas E, 2022. Min–max Q-learning for multi-player pursuit-evasion games. Neurocomputing, 475:1-14. doi: 10.1016/j.neucom.2021.12.025http://doi.org/10.1016/j.neucom.2021.12.025
Shi Y, Hua Y, Yu J, et al., 2022. Multi-agent differential game based cooperative synchronization control using a data-driven method. Front Inform Technol Electron Eng, 23(7):1043-1056. doi: 10.1631/FITEE.2200001http://doi.org/10.1631/FITEE.2200001
Shifferman E, Eilam D, 2004. Movement and direction of movement of a simulated prey affect the success rate in barn owl Tyto alba attack. J Avian Biol, 35(2):111-116. doi: 10.1111/j.0908-8857.2004.03257.xhttp://doi.org/10.1111/j.0908-8857.2004.03257.x
Singh A, Sharma S, Singh J, 2021. Nature-inspired algorithms for wireless sensor networks: a comprehensive survey. Comput Sci Rev, 39:100342. doi: 10.1016/j.cosrev.2020.100342http://doi.org/10.1016/j.cosrev.2020.100342
Song Q, Cao JD, Yu WW, 2010. Second-order leader-following consensus of nonlinear multi-agent systems via pinning control. Syst Contr Lett, 59(9):553-562. doi: 10.1016/j.sysconle.2010.06.016http://doi.org/10.1016/j.sysconle.2010.06.016
Soto AP, McHenry MJ, 2020. Pursuit predation with intermittent locomotion in zebrafish. J Exp Biol, 223(24):jeb230623. doi: 10.1242/jeb.230623http://doi.org/10.1242/jeb.230623
Sturdivant RL, Chong EKP, 2018. The necessary and sufficient conditions for emergence in systems applied to symbol emergence in robots. IEEE Trans Cogn Dev Syst, 10(4):1035-1042. doi: 10.1109/TCDS.2017.2731361http://doi.org/10.1109/TCDS.2017.2731361
Su HS, Wang XF, Lin ZL, 2009. Flocking of multi-agents with a virtual leader. IEEE Trans Autom Contr, 54(2):293-307. doi: 10.1109/TAC.2008.2010897http://doi.org/10.1109/TAC.2008.2010897
Takahashi R, Takimoto M, Kambayashi Y, 2015. Cooperative transportation using pheromone agents. Proc 6th Int Conf on Agents and Artificial Intelligence, p.46-62. doi: 10.1007/978-3-319-25210-0_4http://doi.org/10.1007/978-3-319-25210-0_4
Tang J, Liu G, Pan QT, 2021. A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends. IEEE/CAA J Autom Sin, 8(10):1627-1643. doi: 10.1109/JAS.2021.1004129http://doi.org/10.1109/JAS.2021.1004129
Tian BM, Yang HX, Li W, et al., 2009. Optimal view angle in collective dynamics of self-propelled agents. Phys Rev E, 79(5):052102. doi: 10.1103/PhysRevE.79.052102http://doi.org/10.1103/PhysRevE.79.052102
Vamvoudakis KG, Fotiadis F, Kanellopoulos A, et al., 2022. Nonequilibrium dynamical games: a control systems perspective. Ann Rev Contr, 53:6-18. doi: 10.1016/j.arcontrol.2022.03.006http://doi.org/10.1016/j.arcontrol.2022.03.006
van Oudenhove L, Billoir E, Boulay R, et al., 2011. Temperature limits trail following behaviour through pheromone decay in ants. Naturwissenschaften, 98(12):1009-1017. doi: 10.1007/s00114-011-0852-6http://doi.org/10.1007/s00114-011-0852-6
Vechalapu TR, 2020. A trapping pursuit strategy for capturing a high speed evader. AIAA SciTech Forum, p.2069. doi: 10.2514/6.2020-2069http://doi.org/10.2514/6.2020-2069
Vicsek T, Zafeiris A, 2012. Collective motion. Phys Rep, 517(3-4):71-140. doi: 10.1016/j.physrep.2012.03.004http://doi.org/10.1016/j.physrep.2012.03.004
Vicsek T, Czirók A, Ben-Jacob E, et al., 1995. Novel type of phase transition in a system of self-driven particles. Phys Rev Lett, 75(6):1226-1229. doi: 10.1103/PhysRevLett.75.1226http://doi.org/10.1103/PhysRevLett.75.1226
Wan KF, Wu DW, Zhai YW, et al., 2021. An improved approach towards multi-agent pursuit–evasion game decision-making using deep reinforcement learning. Entropy, 23(11):1433. doi: 10.3390/e23111433http://doi.org/10.3390/e23111433
Wang CY, Shi WX, Liang L, 2022. Cooperative hunting strategy with a superior evader based on differential game. Complexity, 2022:2239182. doi: 10.1155/2022/2239182http://doi.org/10.1155/2022/2239182
Wang JN, Li GL, Liang L, et al., 2021. A pursuit-evasion problem of multiple pursuers from the biological-inspired perspective. Proc 40th Chinese Control Conf, p.1596-1601. doi: 10.23919/CCC52363.2021.9549448http://doi.org/10.23919/CCC52363.2021.9549448
Wang YD, Dong L, Sun CY, 2020. Cooperative control for multi-player pursuit-evasion games with reinforcement learning. Neurocomputing, 412:101-114. doi: 10.1016/j.neucom.2020.06.031http://doi.org/10.1016/j.neucom.2020.06.031
Weintraub IE, Pachter M, Garcia E, 2020. An introduction to pursuit-evasion differential games. Proc American Control Conf, p.1049-1066. doi: 10.23919/ACC45564.2020.9147205http://doi.org/10.23919/ACC45564.2020.9147205
Yan FH, Jiang JC, Di K, et al., 2019. Multiagent pursuit-evasion problem with the pursuers moving at uncertain speeds. J Intell Robot Syst, 95(1):119-135. doi: 10.1007/s10846-018-0841-5http://doi.org/10.1007/s10846-018-0841-5
Yan R, Shi ZY, Zhong YS, 2019. Reach-avoid games with two defenders and one attacker: an analytical approach. IEEE Trans Cybern, 49(3):1035-1046. doi: 10.1109/TCYB.2018.2794769http://doi.org/10.1109/TCYB.2018.2794769
Yu X, Wu WJ, Feng P, et al., 2021. Swarm inverse reinforcement learning for biological systems. Proc IEEE Int Conf on Bioinformatics and Biomedicine, p.274-279. doi: 10.1109/BIBM52615.2021.9669656http://doi.org/10.1109/BIBM52615.2021.9669656
Yu ZJ, Tan JY, Li S, 2022. Simulation of collective pursuit-evasion behavior with runtime situational awareness. Comput Animat Virt World, 33(5):e2124. doi: 10.1002/cav.2124http://doi.org/10.1002/cav.2124
Zha WZ, Chen J, Peng ZH, et al., 2017. Construction of barrier in a fishing game with point capture. IEEE Trans Cybern, 47(6):1409-1422. doi: 10.1109/TCYB.2016.2546381http://doi.org/10.1109/TCYB.2016.2546381
Zhang LM, Prorok A, Bhattacharya S, 2021. Pursuer assignment and control strategies in multi-agent pursuit-evasion under uncertainties. Front Robot AI, 8:691637. doi: 10.3389/frobt.2021.691637http://doi.org/10.3389/frobt.2021.691637
Zhang S, Liu MY, Lei XK, et al., 2019a. Stay-eat or run-away: two alternative escape behaviors. Phys Lett A, 383(7):593-599. doi: 10.1016/j.physleta.2018.12.046http://doi.org/10.1016/j.physleta.2018.12.046
Zhang S, Liu MY, Lei XK, et al., 2019b. Group chase and escape with prey’s anti-attack behavior. Phys Lett A, 383(30):125871. doi: 10.1016/j.physleta.2019.125871http://doi.org/10.1016/j.physleta.2019.125871
Zhang XQ, Ming ZF, 2017. An optimized grey wolf optimizer based on a mutation operator and eliminating-reconstructing mechanism and its application. Front Inform Technol Electron Eng, 18(11):1705-1719. doi: 10.1631/FITEE.1601555http://doi.org/10.1631/FITEE.1601555
Zhang XQ, Zhang YY, Ming ZF, 2021. Improved dynamic grey wolf optimizer. Front Inform Technol Electron Eng, 22(6):877-890. doi: 10.1631/FITEE.2000191http://doi.org/10.1631/FITEE.2000191
Zhou ZJ, Xu H, 2020. Mean field game and decentralized intelligent adaptive pursuit evasion strategy for massive multi-agent system under uncertain environment. Proc American Control Conf, p.5382-5387. doi: 10.23919/ACC45564.2020.9147659http://doi.org/10.23919/ACC45564.2020.9147659
Zhou ZY, Liu JC, Yu JZ, 2022. A survey of underwater multi-robot systems. IEEE/CAA J Autom Sin, 9(1):1-18. doi: 10.1109/JAS.2021.1004269http://doi.org/10.1109/JAS.2021.1004269
Zhu YF, Tang XM, 2010. Overview of swarm intelligence. Proc Int Conf on Computer Application and System Modeling, p.V9-400-V9-403. doi: 10.1109/ICCASM.2010.5623005http://doi.org/10.1109/ICCASM.2010.5623005
Zlatev J, 2001. The epigenesis of meaning in human beings, and possibly in robots. Minds Mach, 11(2):155-195. doi: 10.1023/A:1011218919464http://doi.org/10.1023/A:1011218919464
Publicity Resources
Related Articles
Related Author
Related Institution