FOLLOWUS
1.School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
2.National Key Laboratory of Science and Technology on Test Physics and Numerical Mathematics, Beijing 100076, China
‡Corresponding author
Received:11 July 2024,
Revised:25 October 2024,
Published Online:13 March 2025,
Published:2025-03
Scan QR Code
Changwen DING, Chuntao SHAO, Siteng ZHOU, et al. Distributed multi-target tracking with labeled multi-Bernoulli filter considering efficient label matching[J]. Frontiers of information technology & electronic engineering, 2025, 26(3): 400-414.
Changwen DING, Chuntao SHAO, Siteng ZHOU, et al. Distributed multi-target tracking with labeled multi-Bernoulli filter considering efficient label matching[J]. Frontiers of information technology & electronic engineering, 2025, 26(3): 400-414. DOI: 10.1631/FITEE.2400582.
本文提出一种基于高效标签匹配的分布式标签多伯努利多目标跟踪方法。传统的分布式标签多伯努利融合都是假设本地标签多目标密度之间的标签匹配已经完成。然而,考虑到实际场景中本地标签多目标密度之间的标签空间相互独立,因此上述假设在很多应用场景中无法保证。为解决上述问题,本文从算术均值散度的概念出发,提出一种高效的标签匹配方法,并根据匹配结果,进行标签多伯努利后验概率密度融合。本文所提方法与已有方法相比,在低检测概率场景中体现出良好性能。此外,为保证融合结果的一致性与完整性,整个融合过程被设计为以下4个阶段:预融合、标签确认、后验概率密度补充和唯一性检查。在具有挑战性的非线性纯方位多目标跟踪(MTT)场景中,验证了所提标签匹配分布式标签多伯努利滤波器融合的性能。
We propose a distributed labeled multi-Bernoulli (LMB) filter based on an efficient label matching method. Conventional distributed LMB filter fusion has the premise that the labels among local densities have already been matched. However
considering that the label space of each local posterior is independent
such a premise is not practical in many applications. To achieve distributed fusion practically
we propose an efficient label matching method derived from the divergence of arithmetic average (AA) mechanism
and subsequently label-wise LMB filter fusion is performed according to the matching results. Compared with existing label matching methods
this proposed method shows higher performance
especially in low detection probability scenarios. Moreover
to guarantee the consistency and completeness of the fusion outcome
the overall fusion procedure is designed into the following four stages: pre-fusion
label determination
posterior complement
and uniqueness check. The performance of the proposed label matching distributed LMB filter fusion is demonstrated in a challenging nonlinear bearings-only multi-target tracking (MTT) scenario.
Battistelli G , Chisci L , 2014 . Kullback–Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability . Automatica , 50 ( 3 ): 707 - 718 . https://doi.org/10.1016/j.automatica.2013.11.042 https://doi.org/10.1016/j.automatica.2013.11.042
Battistelli G , Chisci L , Fantacci C , et al. , 2013 . Consensus CPHD filter for distributed multitarget tracking . IEEE J Sel Top Signal Process , 7 ( 3 ): 508 - 520 . https://doi.org/10.1109/JSTSP.2013.2250911 https://doi.org/10.1109/JSTSP.2013.2250911
Beard M , Vo BT , Vo BN , 2017 . OSPA (2) : using the OSPA metric to evaluate multi-target tracking performance . Int Conf on Control, Automation and Information Sciences , p. 86 - 91 . https://doi.org/10.1109/ICCAIS.2017.8217598 https://doi.org/10.1109/ICCAIS.2017.8217598
Cai H , Gehly S , Yang Y , et al. , 2019 . Multisensor tasking using analytical Rényi divergence in labeled multi-Bernoulli filtering . J Guid Contr Dynam , 42 ( 9 ): 2078 - 2085 . https://doi.org/10.2514/1.G004232 https://doi.org/10.2514/1.G004232
Cui SY , Datcu M , 2015 . Comparison of Kullback-Leibler divergence approximation methods between Gaussian mixture models for satellite image retrieval . IEEE Int Geoscience and Remote Sensing Symp , p. 3719 - 3722 . https://doi.org/10.1109/IGARSS.2015.7326631 https://doi.org/10.1109/IGARSS.2015.7326631
Daniyan A , Gong Y , Lambotharan S , et al. , 2017 . Kalman-gain aided particle PHD filter for multitarget tracking . IEEE Trans Aerosp Electron Syst , 53 ( 5 ): 2251 - 2265 . https://doi.org/10.1109/TAES.2017.2690530 https://doi.org/10.1109/TAES.2017.2690530
Fantacci C , Vo BN , Vo BT , et al. , 2016 . Consensus labeled random finite set filtering for distributed multi-object tracking . https://doi.org/10.48550/arXiv.1501.01579 https://doi.org/10.48550/arXiv.1501.01579
Gao L , Battistelli G , Chisci L , 2020a . Fusion of labeled RFS densities with minimum information loss . IEEE Trans Signal Process , 68 : 5855 - 5868 . https://doi.org/10.1109/TSP.2020.3028496 https://doi.org/10.1109/TSP.2020.3028496
Gao L , Battistelli G , Chisci L , 2020b . Multiobject fusion with minimum information loss . IEEE Signal Process Lett , 27 : 201 - 205 . https://doi.org/10.1109/LSP.2019.2963817 https://doi.org/10.1109/LSP.2019.2963817
Garcia-Fernandez AF , Williams JL , Granstrom K , et al. , 2018 . Poisson multi-Bernoulli mixture filter: direct derivation and implementation . IEEE Trans Aerosp Electron Syst , 54 ( 4 ): 1883 - 1901 . https://doi.org/10.1109/TAES.2018.2805153 https://doi.org/10.1109/TAES.2018.2805153
Hamzehi S , Bogenberger K , Franeck P , et al. , 2019 . Combinatorial reinforcement learning of linear assignment problems . IEEE Intelligent Transportation Systems Conf , p. 3314 - 3321 . https://doi.org/10.1109/ITSC.2019.8916920 https://doi.org/10.1109/ITSC.2019.8916920
Hershey JR , Olsen PA , 2007 . Approximating the Kullback Leibler divergence between Gaussian mixture models . IEEE Int Conf on Acoustics, Speech and Signal Processing , p. IV-317 - IV-320 . https://doi.org/10.1109/ICASSP.2007.366913 https://doi.org/10.1109/ICASSP.2007.366913
Hoseinnezhad R , Vo BN , Vo BT , 2013 . Visual tracking in background subtracted image sequences via multi-Bernoulli filtering . IEEE Trans Signal Process , 61 ( 2 ): 392 - 397 . https://doi.org/10.1109/TSP.2012.2222389 https://doi.org/10.1109/TSP.2012.2222389
Katsilieris F , Driessen H , Yarovoy A , 2015 . Threat-based sensor management for target tracking . IEEE Trans Aerosp Electron Syst , 51 ( 4 ): 2772 - 2785 . https://doi.org/10.1109/TAES.2015.140052 https://doi.org/10.1109/TAES.2015.140052
Kropfreiter T , Meyer F , Hlawatsch F , 2020 . A fast labeled multi-Bernoulli filter using belief propagation . IEEE Trans Aerosp Electron Syst , 56 ( 3 ): 2478 - 2488 . https://doi.org/10.1109/TAES.2019.2941104 https://doi.org/10.1109/TAES.2019.2941104
Li SQ , Yi W , Hoseinnezhad R , et al. , 2018 . Robust distributed fusion with labeled random finite sets . IEEE Trans Signal Process , 66 ( 2 ): 278 - 293 . https://doi.org/10.1109/TSP.2017.2760286 https://doi.org/10.1109/TSP.2017.2760286
Li SQ , Battistelli G , Chisci L , et al. , 2019 . Computationally efficient multi-agent multi-object tracking with labeled random finite sets . IEEE Trans Signal Process , 67 ( 1 ): 260 - 275 . https://doi.org/10.1109/TSP.2018.2880704 https://doi.org/10.1109/TSP.2018.2880704
Li TC , 2024 . Arithmetic average density fusion—part II: unified derivation for unlabeled and labeled RFS fusion . IEEE Trans Aerosp Electron Syst , 60 ( 3 ): 3255 - 3268 . https://doi.org/10.1109/TAES.2024.3359592 https://doi.org/10.1109/TAES.2024.3359592
Li TC , Hlawatsch F , 2021 . A distributed particle-PHD filter using arithmetic-average fusion of Gaussian mixture parameters . Inform Fus , 73 : 111 - 124 . https://doi.org/10.1016/j.inffus.2021.02.020 https://doi.org/10.1016/j.inffus.2021.02.020
Li TC , Elvira V , Fan HQ , et al. , 2019 . Local-diffusion-based distributed SMC-PHD filtering using sensors with limited sensing range . IEEE Sens J , 19 ( 4 ): 1580 - 1589 . https://doi.org/10.1109/JSEN.2018.2882084 https://doi.org/10.1109/JSEN.2018.2882084
Li TC , Wang XX , Liang Y , et al. , 2020 . On arithmetic average fusion and its application for distributed multi-Bernoulli multitarget tracking . IEEE Trans Signal Process , 68 : 2883 - 2896 . https://doi.org/10.1109/TSP.2020.2985643 https://doi.org/10.1109/TSP.2020.2985643
Mahler R , 2007a . PHD filters of higher order in target number . IEEE Trans Aerosp Electron Syst , 43 ( 4 ): 1523 - 1543 . https://doi.org/10.1109/TAES.2007.4441756 https://doi.org/10.1109/TAES.2007.4441756
Mahler R , 2007b . Statistical Multisource-Multitarget Information Fusion . Artech House , Norwood, USA .
Mahler RPS , 2003 . Multitarget Bayes filtering via first-order multitarget moments . IEEE Trans Aerosp Electron Syst , 39 ( 4 ): 1152 - 1178 . https://doi.org/10.1109/TAES.2003.1261119 https://doi.org/10.1109/TAES.2003.1261119
Nguyen TTD , Vo BN , Vo BT , et al. , 2021 . Tracking cells and their lineages via labeled random finite sets . IEEE Trans Signal Process , 69 : 5611 - 5626 . https://doi.org/10.1109/TSP.2021.3111705 https://doi.org/10.1109/TSP.2021.3111705
Papi F , Vo BN , Vo BT , et al. , 2015 . Generalized labeled multi-Bernoulli approximation of multi-object densities . IEEE Trans Signal Process , 63 ( 20 ): 5487 - 5497 . https://doi.org/10.1109/TSP.2015.2454478 https://doi.org/10.1109/TSP.2015.2454478
Reuter S , Vo BT , Vo BN , et al. , 2014 . The labeled multi-Bernoulli filter . IEEE Trans Signal Process , 62 ( 12 ): 3246 - 3260 . https://doi.org/10.1109/TSP.2014.2323064 https://doi.org/10.1109/TSP.2014.2323064
Šauša E , Rajmic P , Hlawatsch F , 2024 . Distributed Bayesian target tracking with reduced communication: likelihood consensus 2.0 . Signal Process , 215 : 109259 . https://doi.org/10.1016/j.sigpro.2023.109259 https://doi.org/10.1016/j.sigpro.2023.109259
Schuhmacher D , Vo BT , Vo BN , 2008 . A consistent metric for performance evaluation of multi-object filters . IEEE Trans Signal Process , 56 ( 8 ): 3447 - 3457 . https://doi.org/10.1109/TSP.2008.920469 https://doi.org/10.1109/TSP.2008.920469
Shen K , Dong P , Jing ZL , et al. , 2022 . Consensus-based labeled multi-Bernoulli filter for multitarget tracking in distributed sensor network . IEEE Trans Cybern , 52 ( 12 ): 12722 - 12733 . https://doi.org/10.1109/TCYB.2021.3087521 https://doi.org/10.1109/TCYB.2021.3087521
Shopov VK , Markova VD , 2021 . Application of Hungarian algorithm for assignment problem . Int Conf on Information Technologies , p. 1 - 4 . https://doi.org/10.1109/InfoTech52438.2021.9548600 https://doi.org/10.1109/InfoTech52438.2021.9548600
Vo BN , Ma WK , 2006 . The Gaussian mixture probability hypothesis density filter . IEEE Trans Signal Process , 54 ( 11 ): 4091 - 4104 . https://doi.org/10.1109/TSP.2006.881190 https://doi.org/10.1109/TSP.2006.881190
Vo BN , Vo BT , Phung D , 2014 . Labeled random finite sets and the Bayes multi-target tracking filter . IEEE Trans Signal Process , 62 ( 24 ): 6554 - 6567 . https://doi.org/10.1109/TSP.2014.2364014 https://doi.org/10.1109/TSP.2014.2364014
Vo BN , Vo BT , Beard M , 2019 . Multi-sensor multi-object tracking with the generalized labeled multi-Bernoulli filter . IEEE Trans Signal Process , 67 ( 23 ): 5952 - 5967 . https://doi.org/10.1109/TSP.2019.2946023 https://doi.org/10.1109/TSP.2019.2946023
Vo BT , Vo BN , 2013 . Labeled random finite sets and multi-object conjugate priors . IEEE Trans Signal Process , 61 ( 13 ): 3460 - 3475 . https://doi.org/10.1109/TSP.2013.2259822 https://doi.org/10.1109/TSP.2013.2259822
Vo BT , Vo BN , Cantoni A , 2007 . Analytic implementations of the cardinalized probability hypothesis density filter . IEEE Trans Signal Process , 55 ( 7 ): 3553 - 3567 . https://doi.org/10.1109/TSP.2007.894241 https://doi.org/10.1109/TSP.2007.894241
Vo BT , Vo BN , Cantoni A , 2009 . The cardinality balanced multi-target multi-Bernoulli filter and its implementations . IEEE Trans Signal Process , 57 ( 2 ): 409 - 423 . https://doi.org/10.1109/TSP.2008.2007924 https://doi.org/10.1109/TSP.2008.2007924
Yang CQ , Cao XH , He LD , et al. , 2023 . Distributed multiple attacks detection via consensus AA-GMPHD filter . IEEE Trans Syst Man Cybern Syst , 53 ( 12 ): 7526 - 7536 . https://doi.org/10.1109/TSMC.2023.3298646 https://doi.org/10.1109/TSMC.2023.3298646
Yang F , Zheng LT , Li TC , et al. , 2022 . A computationally efficient distributed Bayesian filter with random finite set observations . Signal Process , 194 : 108454 . https://doi.org/10.1016/j.sigpro.2022.108454 https://doi.org/10.1016/j.sigpro.2022.108454
Yi W , Li GC , Battistelli G , 2020 . Distributed multi-sensor fusion of PHD filters with different sensor fields of view . IEEE Trans Signal Process , 68 : 5204 - 5218 . https://doi.org/10.1109/TSP.2020.3021834 https://doi.org/10.1109/TSP.2020.3021834
Publicity Resources
Related Articles
Related Author
Related Institution