Q-space-coordinate-guided neural networks for high-fidelity diffusion tensor estimation from minimal diffusion-weighted images
Regular Papers|Updated:2025-09-04
|
Q-space-coordinate-guided neural networks for high-fidelity diffusion tensor estimation from minimal diffusion-weighted images
Q空间坐标引导的神经网络从最小数量扩散加权图像中实现高保真扩散张量估计
“In the field of diffusion tensor imaging (DTI), a new deep neural network called q-space-coordinate-guided diffusion tensor imaging (QCG-DTI) has been developed. This technology can efficiently and accurately estimate diffusion tensors (DTs) under flexible q-space sampling schemes, providing a new direction for DTI research.”
Frontiers of Information Technology & Electronic EngineeringVol. 26, Issue 8, Pages: 1305-1323(2025)
Affiliations:
State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
Maokun ZHENG, Zhi LI, Long ZHENG, et al. Q-space-coordinate-guided neural networks for high-fidelity diffusion tensor estimation from minimal diffusion-weighted images[J]. Frontiers of information technology & electronic engineering, 2025, 26(8): 1305-1323.
DOI:
Maokun ZHENG, Zhi LI, Long ZHENG, et al. Q-space-coordinate-guided neural networks for high-fidelity diffusion tensor estimation from minimal diffusion-weighted images[J]. Frontiers of information technology & electronic engineering, 2025, 26(8): 1305-1323. DOI: 10.1631/FITEE.2400766.
Q-space-coordinate-guided neural networks for high-fidelity diffusion tensor estimation from minimal diffusion-weighted images