FOLLOWUS
Department of Industrial and Management Engineering, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
E-mail: ignatiusiwan@hufs.ac.kr
‡ Corresponding author
sllee@hufs.ac.kr
Received:13 September 2024,
Revised:08 January 2025,
Published:2025-06
Scan QR Code
Ignatius IWAN, Bernardo Nugroho YAHYA, Seok-Lyong LEE. Federated model with contrastive learning and adaptive control variates for human activity recognition[J]. Frontiers of information technology & electronic engineering, 2025, 26(6): 896-911.
Ignatius IWAN, Bernardo Nugroho YAHYA, Seok-Lyong LEE. Federated model with contrastive learning and adaptive control variates for human activity recognition[J]. Frontiers of information technology & electronic engineering, 2025, 26(6): 896-911. DOI: 10.1631/FITEE.2400797.
随着隐私问题日益凸显,目前亟需一种通信安全的方法,用于在用户活动数据上训练人体活动识别模型。联邦学习作为一种备受关注的技术,可以在保护数据隐私的同时促进服务器与客户端之间的模型训练。然而,传统联邦学习方法通常假设各客户端数据是相互独立且同分布的,这在实际场景中却并不成立。现实场景中的人类活动具有差异性,导致相同行为在不同客户端执行时会产生系统性偏差。这导致了本地模型目标偏离全局模型目标,进而阻碍整体收敛。为此,本文基于对比学习及自适应变量控制,提出一种名为FedCoad的联邦模型来处理人体活动识别中的客户端偏差。模型对比学习将全局模型和本地模型之间的表征差距最小化,有助于全局模型的收敛。在本地模型更新期间,自适应控制变量会根据模型权重和控制变量更新的变化速率对本地模型更新进行惩罚。我们的实验结果表明,FedCoad在人体活动识别基准数据集上的表现优于现有最先进的联邦学习算法。
Recent attention to privacy issues demands a communication-safe method for training human activity recognition (HAR) models on client activity data. Federated learning (FL) has become a compelling technique to facilitate model training between the server and clients while preserving data privacy. However
classical FL methods often assume independent and identically distributed (IID) data among clients. This assumption does not hold true in practical scenarios. Human activity in real-world scenarios varies
resulting in skewness where identical activities are executed uniquely across clients. This leads to local model objectives drifting away from the global model objective
thereby impeding overall convergence. To address this challenge
we propose FedCoad
a novel federated model leveraging contrastive learning with adaptive control variates to handle the skewness among HAR clients. Model contrastive learning minimizes the gap in representation between global and local models to help global model convergence. During local model updates
the adaptive control variates penalize the local model updates with respect to the model weight and the rate of change from the control variates update. Our experiments show that FedCoad outperforms state-of-the-art FL algorithms on HAR benchmark datasets.
Bianchi V , Bassoli M , Lombardo G , et al. , 2019 . IoT wearable sensor and deep learning: an integrated approach for personalized human activity recognition in a smart home environment . IEEE Int Things J , 6 ( 5 ): 8553 - 8562 . https://doi.org/10.1109/JIOT.2019.2920283 https://doi.org/10.1109/JIOT.2019.2920283
Diao EM , Ding J , Tarokh V , 2021 . HeteroFL: computation and communication efficient federated learning for heterogeneous clients . Proc 9 th Int Conf on Learning Representations .
Guo CR , Zhang YW , Chen YQ , et al. , 2024 . Modality consistency-guided contrastive learning for wearable-based human activity recognition . IEEE Int Things J , 11 ( 12 ): 21750 - 21762 . https://doi.org/10.1109/JIOT.2024.3379019 https://doi.org/10.1109/JIOT.2024.3379019
Guo JL , Li ZT , Liu AF , et al. , 2024 . REC-Fed: a robust and efficient clustered federated system for dynamic edge networks . IEEE Trans Mob Comput , 23 ( 12 ): 15256 - 15273 . https://doi.org/10.1109/TMC.2024.3452312 https://doi.org/10.1109/TMC.2024.3452312
Hsu TMH , Qi H , Brown M , 2019 . Measuring the effects of non-identical data distribution for federated visual classification . https://arxiv.org/abs/1909.06335 https://arxiv.org/abs/1909.06335
Karimireddy SP , Kale S , Mohri M , et al. , 2020 . SCAFFOLD: stochastic controlled averaging for federated learning . Proc 37 th Int Conf on Machine Learning , p. 5132 - 5143 .
Kwapisz JR , Weiss GM , Moore SA , 2011 . Activity recognition using cell phone accelerometers . ACM SIGKDD Explor Newsl , 12 ( 2 ): 74 - 82 . https://doi.org/10.1145/1964897.1964918 https://doi.org/10.1145/1964897.1964918
Li CL , Niu D , Jiang B , et al. , 2021 . Meta-HAR: federated representation learning for human activity recognition . Proc Web Conf , p. 912 - 922 . https://doi.org/10.1145/3442381.3450006 https://doi.org/10.1145/3442381.3450006
Li QB , He BS , Song D , 2021 . Model-contrastive federated learning . Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition , p. 10713 - 10722 . https://doi.org/10.1109/CVPR46437.2021.01057 https://doi.org/10.1109/CVPR46437.2021.01057
Li T , Sahu AK , Zaheer M , et al. , 2020 . Federated optimization in heterogeneous networks . Proc 3 rd Conf on Machine Learning and Systems .
Li X , Huang KX , Yang WH , et al. , 2020 . On the convergence of FedAvg on non-IID data . Proc 8 th Int Conf on Learning Representations .
Malekzadeh M , Clegg RG , Cavallaro A , et al. , 2019 . Mobile sensor data anonymization . Proc Int Conf on Internet of Things Design and Implementation , p. 49 - 58 . https://doi.org/10.1145/3302505.3310068 https://doi.org/10.1145/3302505.3310068
McMahan HB , Moore E , Daniel R , et al. , 2017 . Communication-efficient learning of deep networks from decentralized data . Proc 20 th Int Conf on Artificial Intelligence and Statistics , p. 1273 - 1282 .
Mrozek D , Koczur A , Małysiak-Mrozek B , 2020 . Fall detection in older adults with mobile IoT devices and machine learning in the cloud and on the edge . Inform Sci , 537 : 132 - 147 . https://doi.org/10.1016/j.ins.2020.05.070 https://doi.org/10.1016/j.ins.2020.05.070
Presotto R , Civitarese G , Bettini C , 2022 . FedCLAR: federated clustering for personalized sensor-based human activity recognition . Proc IEEE Int Conf on Pervasive Computing and Communications , p. 227 - 236 . https://doi.org/10.1109/PerCom53586.2022.9762352 https://doi.org/10.1109/PerCom53586.2022.9762352
Sozinov K , Vlassov V , Girdzijauskas S , 2018 . Human activity recognition using federated learning . Proc IEEE Int Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications , p. 1103 - 1111 . https://doi.org/10.1109/BDCloud.2018.00164 https://doi.org/10.1109/BDCloud.2018.00164
Stisen A , Blunck H , Bhattacharya S , et al. , 2015 . Smart devices are different: assessing and mitigating mobile sensing heterogeneities for activity recognition . Proc 13 th ACM Conf on Embedded Networked Sensor Systems , p. 127 - 140 . https://doi.org/10.1145/2809695.2809718 https://doi.org/10.1145/2809695.2809718
Tang CI , Perez-Pozuelo I , Spathis D , et al. , 2021 . SelfHAR: improving human activity recognition through self-training with unlabeled data . Proc ACM Interact Mob Wear Ubiq Technol , 5 ( 1 ): 36 . https://doi.org/10.1145/3448112 https://doi.org/10.1145/3448112
Wang HY , Yurochkin M , Sun YK , et al. , 2020 . Federated learning with matched averaging . Proc 8 th Int Conf on Learning Representations .
Wu JH , Sun J , Song J , et al. , 2022 . Health assessment method based on multi-sign information fusion of body area network . Inform Sci , 618 : 136 - 149 . https://doi.org/10.1016/j.ins.2022.10.033 https://doi.org/10.1016/j.ins.2022.10.033
Publicity Resources
Related Articles
Related Author
Related Institution