

FOLLOWUS
IDEA Research, International Digital Economy Academy, Shenzhen 518045, China
‡ Corresponding author
hshum@idea.edu.cn
Received:27 April 2025,
Revised:2025-08-19,
Published:2025-10
Scan QR Code
Jian GUO, Heung-Yeung SHUM. Large investment model[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(10): 1771-1792.
Jian GUO, Heung-Yeung SHUM. Large investment model[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(10): 1771-1792. DOI: 10.1631/FITEE.2500268.
传统量化投资研究正面临边际效益递减与人力时间成本攀升的双重压力。为突破此困境,我们提出投资大模型(LIM)——一种旨在实现规模化性能与效率提升的新型量化投资研究范式。该模型通过端到端学习与构建底座模型的方法构建量化投资基础模型,使其能够从跨市场、跨资产类别、跨频率的多维度金融数据中自主学习综合信号模式。这些“全局规律”可迁移至下游策略建模阶段,针对具体任务实现性能优化。本文详述了LIM的系统架构设计,探讨了该范式下的关键技术挑战,并指出未来研究方向。
Traditional quantitative investment research is encountering diminishing returns alongside rising labor and time costs. To overcome these challenges
we introduce the large investment model (LIM)
a novel research paradigm designed to enhance both performance and efficiency at scale. LIM employs end-to-end learning and universal modeling to create an upstream foundation model
which is capable of autonomously learning comprehensive signal patterns from diverse financial data spanning multiple exchanges
instruments
and frequencies. These "global patterns" are subsequently transferred to downstream strategy modeling
optimizing performance for specific tasks. We detail the system architecture design of LIM
address the technical challenges inherent in this approach
and outline potential directions for future research.
Ahlberg JH , Nilson EN , Walsh JL , 1967 . The Theory of Splines and Their Applications . Academic Press , New York, NY, USA .
Ait-Sahalia Y , Saglam M , 2024 . High frequency market making: the role of speed . J Econometr , 239 ( 2 ): 105421 . https://doi.org/10.1016/j.jeconom.2022.12.015 https://doi.org/10.1016/j.jeconom.2022.12.015
Aldridge I , 2013 . High-Frequency Trading: a Practical Guide to Algorithmic Strategies and Trading Systems ( 2 nd Ed. ). Wiley , Hoboken, USA .
Angles R , Gutierrez C , 2008 . Survey of graph database models . ACM Comput Surv , 40 ( 1 ): 1 - 39 . https://doi.org/10.1145/1322432.1322433 https://doi.org/10.1145/1322432.1322433
Bengio Y , Courville A , Vincent P , 2013 . Representation learning: a review and new perspectives . IEEE Trans Patt Anal Mach Intell , 35 ( 8 ): 1798 - 1828 . https://doi.org/10.1109/TPAMI.2013.50 https://doi.org/10.1109/TPAMI.2013.50
Black F , Scholes M , 1973 . The pricing of options and corporate liabilities . J Pol Econ , 81 ( 3 ): 637 - 654 . https://doi.org/10.1086/260062 https://doi.org/10.1086/260062
Bodie Z , Kane A , Marcus AJ , 2014 . Investments ( 10 th Ed. ). McGraw-Hill Education , New York, USA .
Brown P , Walsh D , Yuen A , 1997 . The interaction between order imbalance and stock price . Pacif-Bas Fin J , 5 ( 5 ): 539 - 557 . https://doi.org/10.1016/S0927-538X(97)00019-X https://doi.org/10.1016/S0927-538X(97)00019-X
Brown T , Mann B , Ryder N , et al. , 2020 . Language models are few-shot learners . Advances in Neural Information Processing Systems , 33 : 1877 - 1901 .
Cao SS , Jiang W , Lei LG , et al. , 2024 . Applied AI for finance and accounting: alternative data and opportunities . Pacif-Bas Fin J , 84 : 102307 . https://doi.org/10.1016/j.pacfin.2024.102307 https://doi.org/10.1016/j.pacfin.2024.102307
Carbone P , Katsifodimos A , Ewen S , et al. , 2015 . Apache Flink: stream and batch processing in a single engine . IEEE Datab Eng Bull , 36 : 28 - 33 .
Chan KC , 1988 . On the contrarian investment strategy . J Bus , 61 ( 2 ): 147 - 163 .
Chen Q , Francis J , Jiang W , 2005 . Investor learning about analyst predictive ability . J Account Econ , 39 ( 1 ): 3 - 24 .
Chen T , Chen W , Du L , 2021 . An empirical study of financial factor mining based on gene expression programming . 4 th Int Conf on Advanced Electronic Materials, Computers and Software Engineering , p. 1113 - 1117 . https://doi.org/10.1109/AEMCSE51986.2021.00228 https://doi.org/10.1109/AEMCSE51986.2021.00228
Chincarini L , Kim D , 2022 . Quantitative Equity Portfolio Management: an Active Approach to Portfolio Construction and Management ( 2 nd Ed. ). McGraw-Hill Education , New York, USA .
Cho P , Park JH , Song JW , 2021 . Equity research report-driven investment strategy in Korea using binary classification on stock price direction . IEEE Access , 9 : 46364 - 46373 .
Coletta A , Jerome J , Savani R , et al. , 2023 . Conditional generators for limit order book environments: explainability, challenges, and robustness . Proc 4 th ACM Int Conf on AI in Finance , p. 27 - 35 . https://doi.org/10.1145/3604237.3626854 https://doi.org/10.1145/3604237.3626854
Das A , Kong W , Sen R , et al. , 2024 . A decoder-only foundation model for time-series forecasting . Proc 41 st Int Conf on Machine Learning , p. 10148 - 10167 .
Das V , 2015 . Learning Redis . Packt Publishing Ltd. , Birmingham, UK .
Daumé HIII , 2007 . Frustratingly easy domain adaptation . Proc 45 th Annual Meeting of the Association of Computational Linguistics , p. 256 - 263 . https://doi.org/10.18653/v1/P18-1183 https://doi.org/10.18653/v1/P18-1183
Dempster M , Kanniainen J , Keane J , et al. , 2018 . High-Performance Computing in Finance: Problems, Methods, and Solutions ( 1 st Ed. ). Chapman and Hall/CRC , New York, NY, USA . https://doi.org/10.1201/9781315372006 https://doi.org/10.1201/9781315372006
Dessaint O , Foucault T , Fresard L , 2024 . Does alternative data improve financial forecasting? The horizon effect . J Fin , 79 ( 3 ): 2237 - 2287 . https://doi.org/10.1111/jofi.13323 https://doi.org/10.1111/jofi.13323
Dixon M , 2022 . The book of alternative data: a guide for investors, traders and risk managers . Quant Fin , 22 ( 8 ): 1427 - 1428 . https://doi.org/10.1080/14697688.2022.2078736 https://doi.org/10.1080/14697688.2022.2078736
Dixon W , Yuen K , 1974 . Trimming and winsorization: a review . Stat Hefte , 15 : 157 - 170 . https://doi.org/10.1007/BF02922904 https://doi.org/10.1007/BF02922904
Dunning T , Friedman B , Loukides M , et al. , 2014 . Time Series Databases: New Ways to Store and Access Data . O'Reilly Media , Incorporated .
Engelberg J , McLean RD , Pontiff J , et al. , 2023 . Do cross-sectional predictors contain systematic information ? J Fin Quant Anal , 58 ( 3 ): 1172 - 1201 . https://doi.org/10.1017/S0022109022000266 https://doi.org/10.1017/S0022109022000266
Fabozzi F , Mann S , Fabozzi F , 2021 . The Handbook of Fixed Income Securities ( 9 th Ed. ). McGraw-Hill Education , New York, USA .
Fama EF , French KR , 1992 . The cross-section of expected stock returns . J Fin , 47 ( 2 ): 427 - 465 . https://doi.org/10.1111/j.1540-6261.1992.tb04398.x https://doi.org/10.1111/j.1540-6261.1992.tb04398.x
Fang Y , Ren K , Liu W , et al. , 2021 . Universal trading for order execution with Oracle policy distillation . Proc AAAI Conf on Artificial Intelligence , 35 : 107 - 115 . https://doi.org/10.1609/aaai.v35i1.16083 https://doi.org/10.1609/aaai.v35i1.16083
Fang Y , Tang Z , Ren K , et al. , 2023 . Learning multi-agent intention-aware communication for optimal multi-order execution in finance . Proc 29 th ACM SIGKDD Conf on Knowledge Discovery and Data Mining , p. 4003 - 4012 . https://doi.org/10.1145/3580305.3599856 https://doi.org/10.1145/3580305.3599856
Feng F , He X , Wang X , et al. , 2019 . Temporal relational ranking for stock prediction . ACM Trans Inform Syst , 37 ( 2 ): 1 - 30 . https://doi.org/10.1145/3309547 https://doi.org/10.1145/3309547
Feng F , Wang X , He X , et al. , 2021 . Time horizon-aware modeling of financial texts for stock price prediction . Proc 2 nd ACM Int Conf on AI in Finance , p. 1 - 8 . https://doi.org/10.1145/3490354.3494416 https://doi.org/10.1145/3490354.3494416
Gastineau GL , 2001 . Exchange-traded funds: an introduction . J Portf Manag , 27 ( 3 ): 88 - 96 . https://doi.org/10.3905/jpm.2001.319783 https://doi.org/10.3905/jpm.2001.319783
Goodfellow I , Bengio Y , Courville A , 2016 . Deep Learning . MIT Press , Cambridge, USA .
Gupta T , Leung E , Roscovan V , 2022 . Consumer spending and the cross-section of stock returns . J Portf Manag , 48 ( 7 ): 117 - 137 . https://doi.org/10.3905/jpm.2022.1.365 https://doi.org/10.3905/jpm.2022.1.365
Han J , E H , Le G , et al. , 2011 . Survey on NoSQL database . 6 th Int Conf on Pervasive Computing and Applications , p. 363 - 366 . https://doi.org/10.1109/ICPCA.2011.6106531 https://doi.org/10.1109/ICPCA.2011.6106531
Han S , Pool J , Tran J , et al. , 2015 . Learning both weights and connections for efficient neural networks . Proc 29 th Int Conf on Neural Information Processing Systems , p. 1135 - 1143 .
Hastie T , Tibshirani R , Friedman J , 2009 . The Elements of Statistical Learning: Data Mining, Inference, and Prediction ( 2 nd Ed. ). Springer , New York, USA .
Ho T , Stoll HR , 1981 . Optimal dealer pricing under transactions and return uncertainty . J Fin Econ , 9 ( 1 ): 47 - 73 . https://doi.org/10.1016/0304-405X(81)90020-9 https://doi.org/10.1016/0304-405X(81)90020-9
Hochreiter S , Schmidhuber J , 1997 . Long short-term memory . Neur Comput , 9 ( 8 ): 1735 - 1780 .
Howard J , Ruder S , 2018 . Universal language model fine-tuning for text classification . Proc 56 th Annual Meeting of the Association for Computational Linguistics , p. 328 - 339 . https://doi.org/10.18653/v1/P18-1031 https://doi.org/10.18653/v1/P18-1031
Hu EJ , Shen Y , Wallis P , et al. , 2021 . LoRA: low-rank adaptation of large language models . https://arxiv.org/abs/2106.09685 https://arxiv.org/abs/2106.09685
Hu Z , Liu W , Bian J , et al. , 2018 . Listening to chaotic whispers: a deep learning framework for news-oriented stock trend prediction . Proc 11 th ACM Int Conf on Web Search and Data Mining , p. 261 - 269 . https://doi.org/10.1145/3159652.3159690 https://doi.org/10.1145/3159652.3159690
Hull JC , 2021 . Options, Futures and Other Derivatives ( 11 th Ed. ). Pearson , Hoboken, NJ, USA .
Jacob B , Kligys S , Chen B , et al. , 2018 . Quantization and training of neural networks for efficient integer-arithmetic-only inference . IEEE/CVF Conf on Computer Vision and Pattern Recognition , p. 2704 - 2713 . https://doi.org/10.1109/CVPR.2018.00286 https://doi.org/10.1109/CVPR.2018.00286
Jiao X , Li Z , Xu C , et al. , 2023 . Microstructure-empowered stock factor extraction and utilization . https://doi.org/10.48550/arXiv.2308.08135 https://doi.org/10.48550/arXiv.2308.08135
Kakushadze Z , 2016 . 101 formulaic alphas . Wilmott , 2016 ( 84 ): 72 - 81 . https://doi.org/10.1002/wilm.10525 https://doi.org/10.1002/wilm.10525
Kim AY , Tse Y , Wald JK , 2016 . Time series momentum and volatility scaling . J Fin Mark , 30 : 103 - 124 . https://doi.org/10.1016/j.finmar.2016.05.003 https://doi.org/10.1016/j.finmar.2016.05.003
Kou Y , Wang CY , Ye Q , 2013 . An empirical study of calendar spread arbitrage based on high-frequency data: the case of CSI 300 index futures . Int Conf on Management Science and Engineering , p. 1604 - 1609 . https://doi.org/10.1109/ICMSE.2013.6586481 https://doi.org/10.1109/ICMSE.2013.6586481
Krauss C , 2017 . Statistical arbitrage pairs trading strategies: review and outlook . J Econ Surv , 31 ( 2 ): 513 - 545 . https://doi.org/10.1111/joes.12153 https://doi.org/10.1111/joes.12153
Kwan C , 1999 . A note on market-neutral portfolio selection . J Bank Fin , 23 ( 5 ): 773 - 800 . https://doi.org/10.1016/S0378-4266(98)00114-9 https://doi.org/10.1016/S0378-4266(98)00114-9
Lewis P , Perez E , Piktus A , et al. , 2020 . Retrieval-augmented generation for knowledge-intensive NLP tasks . Advances in Neural Information Processing Systems , 33 : 9459 - 9474 .
Li Y , Wang T , Sun B , et al. , 2022 . Detecting the lead–lag effect in stock markets: definition, patterns, and investment strategies . Fin Innov , 8 ( 1 ): 51 . https://doi.org/10.1186/s40854-022-00356-3 https://doi.org/10.1186/s40854-022-00356-3
Li Y , Huang Y , Ildiz ME , et al. , 2024 . Mechanics of next token prediction with self-attention . Int Conf on Artificial Intelligence and Statistics , p. 685 - 693 .
Liew JKS , Budavari T , Kang Z , et al. , 2020 . Pairs trading strategy with geolocation data: the battle between Under Armour and Nike . J Fin Data Sci , 2 ( 1 ): 126 - 143 . https://doi.org/10.3905/jfds.2019.1.024 https://doi.org/10.3905/jfds.2019.1.024
Lin S , Beling PA , 2021 . An end-to-end optimal trade execution framework based on proximal policy optimization . Proc 29 th Int Joint Conf on Artificial Intelligence (Special Track on AI in FinTech) , p. 4548 - 4554 . https://doi.org/10.24963/ijcai.2020/627 https://doi.org/10.24963/ijcai.2020/627
Liu T , Roberts S , Zohren S , 2023 . Deep inception networks: a general end-to-end framework for multi-asset quantitative strategies . https://doi.org/10.48550/arXiv.2307.05522 https://doi.org/10.48550/arXiv.2307.05522
Lo AW , 2010 . Hedge Funds: an Analytic Perspective (Revised and Expanded Edition) . Princeton University Press , Princeton, NJ, USA . http://www.jstor.org/stable/j.ctt7rq28 http://www.jstor.org/stable/j.ctt7rq28
Lo AW , Mamaysky H , Wang J , 2000 . Foundations of technical analysis: computational algorithms, statistical inference, and empirical implementation . J Fin , 55 ( 4 ): 1705 - 1765 . https://doi.org/10.1111/0022-1082.00265 https://doi.org/10.1111/0022-1082.00265
MacKinlay AC , 1997 . Event studies in economics and finance . J Econ Liter , 35 ( 1 ): 13 - 39 .
Madhavan A , 2000 . Market microstructure: a survey . J Fin Mark , 3 ( 3 ): 205 - 258 . https://doi.org/10.1016/S1386-4181(00)00007-0 https://doi.org/10.1016/S1386-4181(00)00007-0
Mao A , Mohri M , Zhong Y , 2023 . Cross-entropy loss functions: theoretical analysis and applications . Proc 40 th Int Conf on Machine Learning , p. 23803 - 23828 .
Nagy P , Frey S , Sapora S , et al. , 2023 . Generative AI for end-to-end limit order book modelling: a token-level autoregressive generative model of message flow using a deep state space network . 4 th ACM Int Conf on AI in Finance , p. 91 - 99 . https://doi.org/10.1145/3604237.3626898 https://doi.org/10.1145/3604237.3626898
Nie Y , Nguyen NH , Sinthong P , et al. , 2023 . A time series is worth 64 words: long-term forecasting with Transformers . https://arxiv.org/abs/2211.14730 https://arxiv.org/abs/2211.14730
OpenAI , Achiam J , Adler S , et al. , 2024 . GPT-4 technical report . https://arxiv.org/abs/2303.08774 https://arxiv.org/abs/2303.08774
Paatela A , Noschis E , Hameri AP , 2017 . Abnormal stock returns using supply chain momentum and operational financials . J Portf Manag , 43 : 50 - 60 . https://doi.org/10.3905/jpm.2017.43.2.050 https://doi.org/10.3905/jpm.2017.43.2.050
Pan SJ , Yang Q , 2010 . A survey on transfer learning . IEEE Trans Knowl Data Eng , 22 ( 10 ): 1345 - 1359 . https://doi.org/10.1109/TKDE.2009.191 https://doi.org/10.1109/TKDE.2009.191
Păuna C , 2019 . Additional limit conditions for breakout trading strategies . Inform Econ , 23 ( 2 ): 25 - 33 .
Penman SH , 2013 . Financial Statement Analysis and Security Valuation ( 5 th Ed. ). McGraw-Hill Education , New York, USA .
Pfeiffer J , Ruckle A , Gurevych I , 2021 . AdapterFusion: non-destructive task composition for transfer learning . Proc 16 th Conf of the European Chapter of the Association for Computational Linguistics , p. 487 - 503 .
Qin M , Sun S , Zhang W , et al. , 2024 . EarnHFT: efficient hierarchical reinforcement learning for high frequency trading . Proc 38 th AAAI Conf on Artificial Intelligence and 36 th Conf on Innovative Applications of Artificial Intelligence and 14 th Symp on Educational Advances in Artificial Intelligence , p. 14669 - 14676 . https://doi.org/10.1609/aaai.v38i13.29384 https://doi.org/10.1609/aaai.v38i13.29384
Salloum S , Dautov R , Chen X , et al. , 2016 . Big data analytics on Apache Spark . Int J Data Sci Anal , 1 ( 3 ): 145 - 164 .
Saputra MYE , Arief SN , Wijayaningrum VN , et al. , 2024 . Real-time server monitoring and notification system with Prometheus, Grafana, and Telegram integration . ASU Int Conf in Emerging Technologies for Sustainability and Intelligent Systems , p. 1808 - 1813 .
Sawhney R , Agarwal S , Wadhwa A , et al. , 2020 . Spatiotemporal hypergraph convolution network for stock movement forecasting . IEEE Int Conf on Data Mining , p. 482 - 491 . https://doi.org/10.1109/ICDM50108.2020.00057 https://doi.org/10.1109/ICDM50108.2020.00057
Sawhney R , Agarwal S , Wadhwa A , et al. , 2021 . Stock selection via spatiotemporal hypergraph attention network: a learning to rank approach . Proc AAAI Conf on Artificial Intelligence, 35(1):497-504 . https://doi.org/10.1609/aaai.v35i1.16127 https://doi.org/10.1609/aaai.v35i1.16127
Sharpe WF , 1966 . Mutual fund performance . J Bus , 39 ( 1 ): 119 - 138 .
Sheikh A , 1996 . Barra's risk models . Barra Res Insights , 1 : 1 - 24 .
Shleifer A , Vishny RW , 1997 . The limits of arbitrage . J Fin , 52 ( 1 ): 35 - 55 . https://doi.org/10.1111/j.1540-6261.1997.tb03807.x https://doi.org/10.1111/j.1540-6261.1997.tb03807.x
Shvachko K , Kuang H , Radia S , et al. , 2010 . The Hadoop distributed file system . IEEE 26 th Symp on Mass Storage Systems and Technologies , p. 1 - 10 . https://doi.org/10.1109/MSST.2010.5496972 https://doi.org/10.1109/MSST.2010.5496972
Sorge M , 2004 . Stress-testing financial systems: an overview of current methodologies . BIS Working Paper, No. 165 . https://doi.org/10.2139/ssrn.759585 https://doi.org/10.2139/ssrn.759585
Stan CS , Pandelica AE , Zamfir VA , et al. , 2019 . Apache Spark and Apache Ignite performance analysis . 22 nd Int Conf on Control Systems and Computer Science , p. 726 - 733 .
Stonebraker M , 2010 . SQL databases v. NoSQL databases . Commun ACM , 53 ( 4 ): 10 - 11 . https://doi.org/10.1145/1721654.172165 https://doi.org/10.1145/1721654.172165
Sun S , Xue W , Wang R , et al. , 2022 . DeepScalper: a risk-aware reinforcement learning framework to capture fleeting intraday trading opportunities . Proc 31 st ACM Int Conf on Information & Knowledge Management , p. 1858 - 1867 . https://doi.org/10.1145/3511808.3557283 https://doi.org/10.1145/3511808.3557283
Sun Y , Liu L , Xu Y , et al. , 2024 . Alternative data in finance and business: emerging applications and theory analysis . Fin Innov , 10 ( 1 ): 127 .
Tetlock PC , Saar-Tsechansky M , Macskassy S , 2008 . More than words: quantifying language to measure firms' fundamentals . J Fin , 63 ( 3 ): 1437 - 1467 . https://doi.org/10.1111/j.1540-6261.2008.01362.x https://doi.org/10.1111/j.1540-6261.2008.01362.x
Toth B , Eisler Z , Lillo F , et al. , 2012 . How does the market react to your order flow ? Quant Fin , 12 ( 7 ): 1015 - 1024 . https://doi.org/10.1080/14697688.2012.690886 https://doi.org/10.1080/14697688.2012.690886
Vaswani A , Shazeer N , Parmar N , et al. , 2017 . Attention is all you need . Advances in Neural Information Processing Systems , 30 : 5998 - 6008 .
Wafi AS , Hassan H , Mabrouk A , 2015 . Fundamental analysis models in financial markets—review study . Proc Econ Fin , 30 : 939 - 947 . https://doi.org/10.1016/S2212-5671(15)01344-1 https://doi.org/10.1016/S2212-5671(15)01344-1
Wang J , Zhang Y , Tang K , et al. , 2019 . AlphaStock: a buying-winners-and-selling-losers investment strategy using interpretable deep reinforcement attention networks . Proc 25 th ACM SIGKDD Int Conf on Knowledge Discov ery & Data Mining , p. 1900 - 1908 . https://doi.org/10.1145/3292500.3330647 https://doi.org/10.1145/3292500.3330647
Wang L , Zhang X , Su H , et al. , 2024 . A comprehensive survey of continual learning: theory, method and application . IEEE Trans Patt Anal Mach Intell , 46 ( 8 ): 5362 - 5383 . https://doi.org/10.1109/TPAMI.2024.3367329 https://doi.org/10.1109/TPAMI.2024.3367329
Wang L , Chen S , Jiang L , et al. , 2025 . Parameter-efficient fine-tuning in large language models: a survey of methodologies . Artif Intell Rev , 58 : 227 . https://doi.org/10.1007/s10462-025-11236-4 https://doi.org/10.1007/s10462-025-11236-4
Wang S , Yuan H , Zhou L , et al. , 2025 . Alpha-GPT: human–AI interactive alpha mining for quantitative investment . https://doi.org/10.48550/arXiv.2308.00016 https://doi.org/10.48550/arXiv.2308.00016
Wang Z , Huang B , Tu S , et al. , 2021 . DeepTrader: a deep reinforcement learning approach for risk-return balanced portfolio management with market conditions embedding . Proc AAAI Conf on Artificial Intelligence, 35(1):643-650 . https://doi.org/10.1609/aaai.v35i1.16144 https://doi.org/10.1609/aaai.v35i1.16144
Wei Z , Dai B , Lin D , 2023 . E2EAI: end-to-end deep learning framework for active investing . Proc 4 th ACM Int Conf on AI in Finance , p. 55 - 63 . https://doi.org/10.1145/3604237.3626848 https://doi.org/10.1145/3604237.3626848
Xia SQ , Simonian J , 2021 . Measuring investment skill in multi-asset strategies: an empirical study of the information coefficient as weighted rank correlation . J Portf Manag , 47 ( 4 ): 135 - 144 . https://doi.org/10.3905/jpm.2021.1.208 https://doi.org/10.3905/jpm.2021.1.208
Xie X , Liu H , Hou W , et al. , 2023 . A brief survey of vector databases . 9 th Int Conf on Big Data and Information Analytics , p. 364 - 371 .
Xu Y , Cohen SB , 2018 . Stock movement prediction from Tweets and historical prices . Proc 56 th Annual Meeting of the Association for Computational Linguistics , p. 1970 - 1979 . https://doi.org/10.18653/v1/P18-1183 https://doi.org/10.18653/v1/P18-1183
Yang W , Wei Y , Wei H , et al. , 2023 . Survey on explainable AI: from approaches, limitations and applications aspects . Human-Centr Intell Syst , 3 : 161 - 188 . https://doi.org/10.1007/s44230-023-00038-y https://doi.org/10.1007/s44230-023-00038-y
Yin S , Fu C , Zhao S , et al. , 2024 . A survey on multimodal large language models . Nat Sci Rev , 11 ( 12 ). https://doi.org/10.1093/nsr/nwae403 https://doi.org/10.1093/nsr/nwae403
Yosinski J , Clune J , Bengio Y , et al. , 2014 . How transferable are features in deep neural networks ? Proc 28 th Int Conf on Neural Information Processing Systems , p. 3320 - 3328 .
Yu H , Hao X , Wu L , et al. , 2023 . Eye in outer space: satellite imageries of container ports can predict world stock returns . Human Soc Sci Commun , 10 ( 1 ): 1 - 16 . https://doi.org/10.1057/s41599-023-01891-9 https://doi.org/10.1057/s41599-023-01891-9
Zhang F , Guo R , Cao H , 2020 . Information coefficient as a performance measure of stock selection models . https://arxiv.org/abs/2010.08601 https://arxiv.org/abs/2010.08601
Zhang L , Aggarwal C , Qi GJ , 2017 . Stock price prediction via discovering multi-frequency trading patterns . Proc 23 rd ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining , p. 2141 - 2149 . https://doi.org/10.1145/3097983.3098117 https://doi.org/10.1145/3097983.3098117
Zhang Y , Zhao P , Wu Q , et al. , 2022 . Cost-sensitive portfolio selection via deep reinforcement learning . IEEE Trans Knowl Data Eng , 34 ( 1 ): 236 - 248 . https://doi.org/10.1109/TKDE.2020.2979700 https://doi.org/10.1109/TKDE.2020.2979700
Zhang Z , Zohren S , Roberts S , 2019 . DeepLOB: deep convolutional neural networks for limit order books . IEEE Trans Signal Process , 67 ( 11 ): 3001 - 3012 . https://doi.org/10.1109/TSP.2019.2907260 https://doi.org/10.1109/TSP.2019.2907260
Zhang Z , Lim B , Zohren S , 2021 . Deep learning for market by order data . Appl Math Fin , 28 ( 1 ): 79 - 95 . https://doi.org/10.1080/1350486X.2021.1967767 https://doi.org/10.1080/1350486X.2021.1967767
Zhao J , Zhang C , Qin M , et al. , 2025 . QuantFactor REINFORCE: mining steady formulaic alpha factors with variance-bounded REINFORCE . IEEE Trans Signal Process , 73 : 2448 - 2463 . https://doi.org/10.1109/TSP.2025.3576781 https://doi.org/10.1109/TSP.2025.3576781
Zhong L , Wu J , Li Q , et al. , 2023 . A comprehensive survey on automatic knowledge graph construction . ACM Comput Surv , 56 ( 4 ): 1 - 62 . https://doi.org/10.1145/3618295 https://doi.org/10.1145/3618295
Zhou C , Li Q , Li C , et al. , 2024 . A comprehensive survey on pretrained foundation models: a history from BERT to ChatGPT . Int J Mach Learn Cybern . https://doi.org/10.1007/s13042-024-02443-6 https://doi.org/10.1007/s13042-024-02443-6
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621