
FOLLOWUS
Center of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, Harbin 150080, China
Key Lab of Ultra-precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150080, China
[ "", "Yilei ZHANG, first author of this invited paper, received her BS degree in Automation from Guangxi University, Nanning, China. She is currently a PhD candidate at the Instrument Science and Technology from the Harbin Institute of Technology, Harbin, China. Her research interests include optical transparent electromagnetic shielding windows and tunable absorber" ]
[ "", "Zhengang LU, corresponding author of this invited paper, received his BS and PhD degrees in Instrument Science and Technology from the Harbin Institute of Technology (HIT), Harbin, China. At present, he is a professor at the HIT, a vice director of the Center of Ultra-precision Optoelectronic Instrument Engineering, HIT. He is a corresponding expert of Front Inform Technol Electron Eng. His current research interests include micronano optics and electromagnetic shielding optical windows and precision instruments and engineering" ]
[ "", "Jiubin TAN received his BS, MS, and PhD degrees in Instrument Science and Technology from the Harbin Institute of Technology (HIT), Harbin, China. He was elected as an Academician of the Chinese Academy of Engineering in 2017. He is now the president of the Precision Instrument Engineering Research Institute of the HIT, and the deputy director of the National Metrology Strategy Expert Advisory Committee. He is an editorial board member of Front Inform Technol Electron Eng. His current research interests include ultra-precision measurement technology and instrument engineering" ]
纸质出版日期:2021-11,
收稿日期:2020-10-10,
修回日期:2021-10-12,
Scan QR Code
张怡蕾, 曹瑾璇, 陆振刚, 等. 金属网栅透明导电膜光电性能综合评价因子[J]. 信息与电子工程前沿(英文), 2021,22(11):1532-1540.
YILEI ZHANG, JINXUAN CAO, ZHENGANG LU, et al. Comprehensive evaluation factor of optoelectronic properties for transparent conductive metallic mesh films. [J]. Frontiers of information technology & electronic engineering, 2021, 22(11): 1532-1540.
张怡蕾, 曹瑾璇, 陆振刚, 等. 金属网栅透明导电膜光电性能综合评价因子[J]. 信息与电子工程前沿(英文), 2021,22(11):1532-1540. DOI: 10.1631/FITEE.2000690.
YILEI ZHANG, JINXUAN CAO, ZHENGANG LU, et al. Comprehensive evaluation factor of optoelectronic properties for transparent conductive metallic mesh films. [J]. Frontiers of information technology & electronic engineering, 2021, 22(11): 1532-1540. DOI: 10.1631/FITEE.2000690.
获取金属网栅最佳光电性能(零级光学透光率、电磁屏蔽效能和杂散光均匀性)对其在透明电磁屏蔽领域的应用具有重要价值。然而,目前相关研究较少。本文提出一种基于金属网栅光电性能的形式简单的综合评价因子
Q
,可简便有效地用于不同结构参数的金属网栅光电性能评估。评价因子
Q
值与TOPSIS的评估结果变化趋势一致,验证了评价因子
Q
的有效性。评价因子
Q
还可以对不同图案的金属网栅光电性能进行评估,使其在金属网栅的设计和应用中具有十分广泛的应用前景。
Finding the optimal optoelectronic properties (zero-order optical transmittance
shielding effectiveness
and stray light uniformity) of metallic mesh is significant for its application in electromagnetic interference shielding areas. However
there are few relevant studies at present. Based on optoelectronic properties
we propose a comprehensive evaluation factor
Q
which is simple in form and can be used to evaluate the mesh with different parameters in a simple and efficient way. The effectivity of
Q
is verified by comparing the trend of
Q
values with the evaluation results of the technique for order preference by similarity to ideal solution (TOPSIS). The evaluation factor
Q
can also be extended to evaluate the optoelectronic properties of different kinds of metallic meshes
which makes it extremely favorable for metallic mesh design and application.
金属网栅TOPSIS法熵权法综合评价因子透明导电膜
Metallic meshTechnique for order preference by similarity to ideal solution (TOPSIS)Entropy weight (EW)Comprehensive evaluationTransparent conductive films
F Gao, , , P Gao, , , WT Zhu, , , 等. . 5G evolution promoting innovation of antenna systems. . Front Inform Technol Electron Eng, , 2020. . 21((1):):188--194. . DOI:10.1631/FITEE.1900561http://doi.org/10.1631/FITEE.1900561..
S Greco, , , MS Sarto, , , A Tamburrano. . Shielding performances of ITO transparent windows: theoretical and experimental characterization. . Proc Int Symp on Electromagnetic Compatibility-EMC Europe, , 2008. . p.1--6. . DOI:10.1109/EMCEUROPE.2008.4786870http://doi.org/10.1109/EMCEUROPE.2008.4786870..
JI Halman, , , KA Ramsey, , , M Thomas, , , 等. . Predicted and measured transmission and diffraction by a metallic mesh coating. . Proc SPIE 7302, Window and Dome Technologies and Materials XI, , 2009. . Article 73020YDOI:10.1117/12.818760http://doi.org/10.1117/12.818760..
JC Han, , , XN Wang, , , YF Qiu, , , 等. . Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding. . Carbon, , 2015. . 87206--214. . DOI:10.1016/j.carbon.2015.01.057http://doi.org/10.1016/j.carbon.2015.01.057..
DS Hecht, , , LB Hu, , , G Irvin. . Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. . Adv Mater, , 2011. . 23((13):):1482--1513. . DOI:10.1002/adma.201003188http://doi.org/10.1002/adma.201003188..
SK Hong, , , KY Kim, , , TY Kim, , , 等. . Electromagnetic interference shielding effectiveness of monolayer graphene. . Nanotechnology, , 2012. . 23((45):):455704DOI:10.1088/0957-4484/23/45/455704http://doi.org/10.1088/0957-4484/23/45/455704..
TS Horng, , , KC Peng, , , JK Jau, , , 等. . S-parameter formulation of quality factor for a spiral inductor in generalized two-port configuration. . IEEE Trans Microw Theory Techn, , 2003. . 51((11):):2197--2202. . DOI:10.1109/TMTT.2003.818584http://doi.org/10.1109/TMTT.2003.818584..
GR Jahanshahloo, , , FH Lotfi, , , M Izadikhah. . An algorithmic method to extend TOPSIS for decision-making problems with interval data. . Appl Math Comput, , 2006. . 175((2):):1375--1384. . DOI:10.1016/j.amc.2005.08.048http://doi.org/10.1016/j.amc.2005.08.048..
Y Ji, , , GH Huang, , , W Sun. . Risk assessment of hydropower stations through an integrated fuzzy entropy-weight multiple criteria decision making method: a case study of the Xiangxi River. . Expert Syst Appl, , 2015. . 42((12):):5380--5389. . DOI:10.1016/j.eswa.2014.12.026http://doi.org/10.1016/j.eswa.2014.12.026..
I Khrapach, , , F Withers, , , TH Bointon, , , 等. . Novel highly conductive and transparent graphene-based conductors. . Adv Mater, , 2012. . 24((21):):2844--2849. . DOI:10.1002/adma.201200489http://doi.org/10.1002/adma.201200489..
WM Kim, , , DY Ku, , , IK Lee, , , 等. . The electromagnetic interference shielding effect of indium–zinc oxide/silver alloy multilayered thin films. . Thin Sol Films, , 2005. . 473((2):):315--320. . DOI:10.1016/j.tsf.2004.08.083http://doi.org/10.1016/j.tsf.2004.08.083..
M Kohin, , , SJ Wein, , , JD Traylor, , , 等. . Analysis and design of transparent conductive coatings and filters. . Opt Eng, , 1993. . 32((5):):911--925. . DOI:10.1117/12.130266http://doi.org/10.1117/12.130266..
RA Krohling, , , R Lourenzutti, , , M Campos. . Ranking and comparing evolutionary algorithms with Hellinger-TOPSIS. . Appl Soft Comput, , 2015. . 37217--226. . DOI:10.1016/j.asoc.2015.08.012http://doi.org/10.1016/j.asoc.2015.08.012..
T Kuo. . A modified TOPSIS with a different ranking index. . Eur J Oper Res, , 2017. . 260((1):):152--160. . DOI:10.1016/j.ejor.2016.11.052http://doi.org/10.1016/j.ejor.2016.11.052..
X Lu, , , YS Liu, , , ZG Lu, , , 等. . High-transmittance double-layer frequency-selective surface based on interlaced multiring metallic mesh. . Opt Lett, , 2019. . 44((5):):1253--1256. . DOI:10.1364/OL.44.001253http://doi.org/10.1364/OL.44.001253..
ZG Lu, , , HY Wang, , , JB Tan, , , 等. . Microwave shielding enhancement of high-transparency, double-layer, submillimeter-period metallic mesh. . Appl Phys Lett, , 2014. . 105((24):):241904DOI:10.1063/1.4904466http://doi.org/10.1063/1.4904466..
ZG Lu, , , HY Wang, , , JB Tan, , , 等. . Achieving an ultra-uniform diffraction pattern of stray light with metallic meshes by using ring and sub-ring arrays. . Opt Lett, , 2016. . 41((9):):1941--1944. . DOI:10.1364/OL.41.001941http://doi.org/10.1364/OL.41.001941..
AR Madaria, , , A Kumar, , , FN Ishikawa, , , 等. . Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. . Nano Res, , 2010. . 3((8):):564--573. . DOI:10.1007/s12274-010-0017-5http://doi.org/10.1007/s12274-010-0017-5..
IB Murray, , , V Densmore, , , V Bora, , , 等. . Numerical comparison of grid pattern diffraction effects through measurement and modeling with OptiScan software. . Proc SPIE 8016, Window and Dome Technologies and Materials XⅡ, , 2011. . Article 80160UDOI:10.1117/12.883422http://doi.org/10.1117/12.883422..
C Palmer. . A storm over potential 5G interference. . Engineering, , 2019. . 5((5):):815--816. . DOI:10.1016/j.eng.2019.08.007http://doi.org/10.1016/j.eng.2019.08.007..
D Polley, , , A Barman, , , RK Mitra. . EMI shielding and conductivity of carbon nanotube-polymer composites at terahertz frequency. . Opt Lett, , 2014. . 39((6):):1541--1544. . DOI:10.1364/OL.39.001541http://doi.org/10.1364/OL.39.001541..
DR Rhodes. . On the quality factor of strip and line source antennas and its relationship to superdirectivity ratio. . IEEE Trans Antenn Propag, , 1972. . 20((3):):318--325. . DOI:10.1109/TAP.1972.1140191http://doi.org/10.1109/TAP.1972.1140191..
HS Shih, , , HJ Shyur, , , ES Lee. . An extension of TOPSIS for group decision making. . Math Comput Model, , 2007. . 45((7-8):):801--813. . DOI:10.1016/j.mcm.2006.03.023http://doi.org/10.1016/j.mcm.2006.03.023..
JB Tan, , , YM Liu. . Optimization of optical communication window mesh through full-wave analysis of periodic mesh. . Opt Commun, , 2008. . 281((19):):4835--4839. . DOI:10.1016/j.optcom.2008.06.044http://doi.org/10.1016/j.optcom.2008.06.044..
JB Tan, , , ZG Lu. . Contiguous metallic rings: an inductive mesh with high transmissivity, strong electromagnetic shielding, and uniformly distributed stray light. . Opt Expr, , 2007. . 15((3):):790--796. . DOI:10.1364/OE.15.000790http://doi.org/10.1364/OE.15.000790..
OB Vorobyev. . Quality factor of an antenna with closely spaced resonances. . IEEE Antenn Wirel Propag Lett, , 2011. . 101216--1219. . DOI:10.1109/LAWP.2011.2173653http://doi.org/10.1109/LAWP.2011.2173653..
HY Wang, , , ZG Lu, , , JB Tan. . Generation of uniform diffraction pattern and high EMI shielding performance by metallic mesh composed of ring and rotated sub-ring arrays. . Opt Expr, , 2016. . 24((20):):22989--23000. . DOI:10.1364/OE.24.022989http://doi.org/10.1364/OE.24.022989..
HY Wang, , , ZG Lu, , , YS Liu, , , 等. . Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding. . Opt Lett, , 2017. . 42((8):):1620--1623. . DOI:10.1364/OL.42.001620http://doi.org/10.1364/OL.42.001620..
HY Wang, , , ZG Lu, , , JB Tan, , , 等. . Transparent conductor based on metal ring clusters interface with uniform light transmission for excellent microwave shielding. . Thin Sol Films, , 2018. . 66276--82. . DOI:10.1016/j.tsf.2018.07.038http://doi.org/10.1016/j.tsf.2018.07.038..
WQ Wang, , , BF Bai, , , Q Zhou, , , 等. . Petal-shaped metallic mesh with high electromagnetic shielding efficiency and smoothed uniform diffraction. . Opt Mater Expr, , 2018. . 8((11):):3485--3493. . DOI:10.1364/OME.8.003485http://doi.org/10.1364/OME.8.003485..
B Wen, , , XX Wang, , , WQ Cao, , , 等. . Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world. . Nanoscale, , 2014. . 6((11):):5754--5761. . DOI:10.1039/C3NR06717Chttp://doi.org/10.1039/C3NR06717C..
RY Wu, , , TJ Cui. . Microwave metamaterials: from exotic physics to novel information systems. . Front Inform Technol Electron Eng, , 2020. . 21((1):):4--26. . DOI:10.1631/FITEE.1900465http://doi.org/10.1631/FITEE.1900465..
ZC Wu, , , ZH Chen, , , X Du, , , 等. . Transparent, conductive carbon nanotube films. . Science, , 2004. . 305((5688):):1273--1276. . DOI:10.1126/science.1101243http://doi.org/10.1126/science.1101243..
T Yamada, , , T Morizane, , , T Arimitsu, , , 等. . Application of low resistivity Ga-doped ZnO films to transparent electromagnetic interference shielding material. . Thin Sol Films, , 2008. . 517((3):):1027--1031. . DOI:10.1016/j.tsf.2008.06.047http://doi.org/10.1016/j.tsf.2008.06.047..
T Yang, , , CC Hung. . Multiple-attribute decision making methods for plant layout design problem. . Robot Comput-Integr Manuf, , 2007. . 23((1):):126--137. . DOI:10.1016/j.rcim.2005.12.002http://doi.org/10.1016/j.rcim.2005.12.002..
XY Zeng, , , QK Zhang, , , RM Yu, , , 等. . A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer. . Adv Mater, , 2010. . 22((40):):4484--4488. . DOI:10.1002/adma.201001811http://doi.org/10.1002/adma.201001811..
H Zhang, , , CL Gu, , , LW Gu, , , 等. . The evaluation of tourism destination competitiveness by TOPSIS & information entropy—a case in the Yangtze River Delta of China. . Tour Manag, , 2011. . 32((2):):443--451. . DOI:10.1016/j.tourman.2010.02.007http://doi.org/10.1016/j.tourman.2010.02.007..
XX Zhang, , , AD Ren, , , Y Liu. . Decoupling methods of MIMO antenna arrays for 5G applications: a review. . Front Inform Technol Electron Eng, , 2020. . 21((1):):62--71. . DOI:10.1631/FITEE.1900466http://doi.org/10.1631/FITEE.1900466..
H Zhong, , , Y Han, , , J Lin, , , 等. . Pattern randomization: an efficient way to design high-performance metallic meshes with uniform stray light for EMI shielding. . Opt Expr, , 2020. . 28((5):):7008--7017. . DOI:10.1364/OE.386921http://doi.org/10.1364/OE.386921..
HX Zhu, , , YQ Yang, , , A Sheng, , , 等. . Layered structural design of flexible waterborne polyurethane conductive film for excellent electromagnetic interference shielding and low microwave reflectivity. . Appl Surf Sci, , 2019. . 4691--9. . DOI:10.1016/j.apsusc.2018.11.007http://doi.org/10.1016/j.apsusc.2018.11.007..
M Zhu, , , CX Xiong, , , Q Lee. . Research on ITO transparent electromagnetic shielding coatings for E-O system. . Proc SPIE 6722, 3rd Int Symp on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies, , 2007. . Article 67223YDOI:10.1117/12.783569http://doi.org/10.1117/12.783569..
ZH Zou, , , Y Yun, , , JN Sun. . Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. . J Environ Sci, , 2006. . 18((5):):1020--1023. . DOI:10.1016/S1001-0742(06)60032-6http://doi.org/10.1016/S1001-0742(06)60032-6..
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621