FOLLOWUS
1.College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
2.Key Laboratory of Ocean Observation-Imaging Testbed of Zhejiang Province, Ocean College, Zhejiang University, Zhoushan 316021, China
‡Corresponding authors
纸质出版日期:2023-01-0 ,
收稿日期:2021-08-22,
录用日期:2021-11-01
Scan QR Code
詹东洲, 王思甜, 蔡守桂, 等. 基于到达时间差和到达频率差的多层等梯度声速剖面建模与声学定位[J]. 信息与电子工程前沿(英文), 2023,24(1):164-175.
DONGZHOU ZHAN, SITIAN WANG, SHOUGUI CAI, et al. Acoustic localization with multi-layer isogradient sound speed profile using TDOA and FDOA. [J]. Frontiers of information technology & electronic engineering, 2023, 24(1): 164-175.
詹东洲, 王思甜, 蔡守桂, 等. 基于到达时间差和到达频率差的多层等梯度声速剖面建模与声学定位[J]. 信息与电子工程前沿(英文), 2023,24(1):164-175. DOI: 10.1631/FITEE.2100398.
DONGZHOU ZHAN, SITIAN WANG, SHOUGUI CAI, et al. Acoustic localization with multi-layer isogradient sound speed profile using TDOA and FDOA. [J]. Frontiers of information technology & electronic engineering, 2023, 24(1): 164-175. DOI: 10.1631/FITEE.2100398.
在水下媒介中,声速随着水深、温度和盐度而变化。水体的不均匀性导致声线弯折,使得现有基于声信号直线传播假设的定位算法不够精确。为实现水下声学传感网络中的高精度节点定位,本文首先使用线性分割近似方法,提出多层等梯度声速剖面(sound speed profile,SSP)模型。基于此模型,可将声线跟踪问题转化为多项式寻根问题。利用传感器节点处信号多普勒频移的导数,提出一种新的使用到达时间差(time difference of arrival,TDOA)和到达频率差(frequency difference of arrival,FDOA)的水下节点定位算法。通过模拟仿真,可以证明所提算法的有效性。与传统基于直线传播假设的方法相比,所提算法可有效处理声线弯折现象。此外,研究了不同SSP建模误差下的估计精度。总体而言,新提出的方法可以实现准确可靠的节点定位。
In the underwater medium
the speed of sound varies with water depth
temperature
and salinity. The inhomogeneity of water leads to bending of sound rays
making the existing localization algorithms based on straight-line propagation less precise. To realize high-precision node positioning in underwater acoustic sensor networks (UASNs)
a multi-layer isogradient sound speed profile (SSP) model is developed using the linear segmentation approximation approach. Then
the sound ray tracking problem is converted into a polynomial root-searching problem. Based on the derived gradient of the signal's Doppler shift at the sensor node
a novel underwater node localization algorithm is proposed using both the time difference of arrival (TDOA) and frequency difference of arrival (FDOA). Simulations are implemented to illustrate the effectiveness of the proposed algorithm. Compared with the traditional straight-line propagation method
the proposed algorithm can effectively handle the sound ray bending phenomenon. Estimation accuracy with different SSP modeling errors is also investigated. Overall
accurate and reliable node localization can be achieved.
水下声学传感器网络声学定位声速剖面到达时间差(TDOA)到达频率差(FDOA)
Underwater acoustic sensor networkAcoustic localizationSound speed profileTime difference of arrival (TDOA)Frequency difference of arrival (FDOA)
Ameer PM, Jacob L, 2010. Localization using ray tracing for underwater acoustic sensor networks. IEEE Commun Lett, 14(10):930-932. doi: 10.1109/LCOMM.2010.090810.101237http://doi.org/10.1109/LCOMM.2010.090810.101237
Beaudeau JP, Bugallo MF, Djurić PM, 2015. RSSI-based multi-target tracking by cooperative agents using fusion of cross-target information. IEEE Trans Signal Processing, 63(19):5033-5044. doi: 10.1109/TSP.2015.2448530http://doi.org/10.1109/TSP.2015.2448530
Bogushevich AY, 1999. To an analysis of the acoustic Doppler effect in a three-dimensional inhomogeneous moving medium. Atmos Ocean Opt, 12(4):301-308.
Cai SJ, 2019. Research on Positioning Error Correction in Underwater Acoustic Sensor Network with Sound Speed Inversion. MS Thesis, Zhejiang University, Hangzhou, China (in Chinese).
Chen HY, Liu MQ, Zhang SL, 2018. Energy-efficient localization and target tracking via underwater mobile sensor networks. Front Inform Technol Electron Eng, 19(8):999-1012.doi: 10.1631/FITEE.1700598http://doi.org/10.1631/FITEE.1700598
Cheng XZ, Shu HN, Liang QL, et al., 2008. Silent positioning in underwater acoustic sensor networks. IEEE Trans Veh Technol, 57(3):1756-1766. doi: 10.1109/TVT.2007.912142http://doi.org/10.1109/TVT.2007.912142
Doǧançay K, Hashemi-Sakhtsari A, 2005. Target tracking by time difference of arrival using recursive smoothing. Signal Processing, 85(4):667-679. doi: 10.1016/j.sigpro.2004.11.007http://doi.org/10.1016/j.sigpro.2004.11.007
Erol-Kantarci M, Mouftah HT, Oktug S, 2011. A survey of architectures and localization techniques for underwater acoustic sensor networks. IEEE Commun Surv Tutor, 13(3):487-502. doi: 10.1109/SURV.2011.020211.00035http://doi.org/10.1109/SURV.2011.020211.00035
Fan GY, Chen HF, Xie L, et al., 2011. Funneling media access control (MAC) protocol for underwater acoustic sensor networks. J Zhejiang Univ Sci C (Comput & Electron), 12(11):932-941.doi: 10.1631/JZUS.C1000388http://doi.org/10.1631/JZUS.C1000388
Ferguson BG, Lo KW, Thuraisingham RA, 2005. Sensor position estimation and source ranging in a shallow water environment. IEEE J Ocean Eng, 30(2):327-337. doi: 10.1109/JOE.2004.838064http://doi.org/10.1109/JOE.2004.838064
Han GJ, Jiang JF, Shu L, et al., 2012. Localization algorithms of underwater wireless sensor networks: a survey. Sensors, 12(2):2026-2061. doi: 10.3390/s120202026http://doi.org/10.3390/s120202026
Ho KC, Xu WW, 2004. An accurate algebraic solution for moving source location using TDOA and FDOA measurements. IEEE Trans Signal Processing, 52(9):2453-2463. doi: 10.1109/TSP.2004.831921http://doi.org/10.1109/TSP.2004.831921
Ho KC, Lu XN, Kovavisaruch L, 2007. Source localization using TDOA and FDOA measurements in the presence of receiver location errors: analysis and solution. IEEE Trans Signal Processing, 55(2):684-696. doi: 10.1109/TSP.2006.885744http://doi.org/10.1109/TSP.2006.885744
Huang H, Zheng YR, 2018. Node localization with AoA assistance in multi-hop underwater sensor networks. Ad Hoc Netw, 78:32-41. doi: 10.1016/j.adhoc.2018.05.005http://doi.org/10.1016/j.adhoc.2018.05.005
Jia TY, Ho KC, Wang HY, et al., 2019. Effect of sensor motion on time delay and Doppler shift localization: analysis and solution. IEEE Trans Signal Processing, 67(22):5881-5895. doi: 10.1109/TSP.2019.2946025http://doi.org/10.1109/TSP.2019.2946025
Jiang F, Zhang ZK, Najafabadi HE, et al., 2020. Underwater TDOA/FDOA joint localisation method based on cross-ambiguity function. IET Radar Sonar Navig, 14(8):1256-1266.doi: 10.1049/iet-rsn.2020.0003http://doi.org/10.1049/iet-rsn.2020.0003
Kong JJ, Cui JH, Wu DP, et al., 2005. Building underwater ad-hoc networks and sensor networks for large scale real-time aquatic applications. Processing IEEE Military Communications Conf, p.1535-1541. doi: 10.1109/milcom.2005.1605894http://doi.org/10.1109/milcom.2005.1605894
Li B, Xu YX, Fan SS, et al., 2018. Underwater docking of an under-actuated autonomous underwater vehicle: system design and control implementation. Front Inform Technol Electron Eng, 19(8):1024-1041. doi: 10.1631/FITEE.1700382http://doi.org/10.1631/FITEE.1700382
Liang QL, Zhang BJ, Zhao CL, et al., 2013. TDoA for passive localization: underwater versus terrestrial environment. IEEE Trans Parall Distrib Syst, 24(10):2100-2108. doi: 10.1109/TPDS.2012.310http://doi.org/10.1109/TPDS.2012.310
Luo JL, Han Y, Fan LY, 2018. Underwater acoustic target tracking: a review. Sensors, 18(1):112. doi: 10.3390/s18010112http://doi.org/10.3390/s18010112
Pompili D, Akyildiz IF, 2009. Overview of networking protocols for underwater wireless communications. IEEE Commun Mag, 47(1):97-102. doi: 10.1109/MCOM.2009.4752684http://doi.org/10.1109/MCOM.2009.4752684
Ramezani H, Jamali-Rad H, Leus G, 2013. Target localization and tracking for an isogradient sound speed profile. IEEE Trans Signal Processing, 61(6):1434-1446. doi: 10.1109/TSP.2012.2235432http://doi.org/10.1109/TSP.2012.2235432
Shirley JW, 1951. An early experimental determination of Snell's law. Am J Phys, 19(9):507-508. doi: 10.1119/1.1933068http://doi.org/10.1119/1.1933068
Sun YL, Yuan YZ, Xu QM, et al., 2019. A mobile anchor node assisted RSSI localization scheme in underwater wireless sensor networks. Sensors, 19(20):4369. doi: 10.3390/s19204369http://doi.org/10.3390/s19204369
Tan HP, Diamant R, Seah WKG, 2011. A survey of techniques and challenges in underwater localization. Ocean Eng, 38(14-15):1663-1676. doi: 10.1016/j.oceaneng.2011.07.017http://doi.org/10.1016/j.oceaneng.2011.07.017
Vankayalapati N, Kay S, Ding Q, 2014. TDOA based direct positioning maximum likelihood estimator and the Cramer-Rao bound. IEEE Trans Aerosp Electron Syst, 50(3):1616-1635. doi: 10.1109/TAES.2013.110499http://doi.org/10.1109/TAES.2013.110499
Vincent H, Hu SLJ, 1997. Geodetic position estimation of underwater acoustic sensors. J Acoust Soc Am, 102(5):3099-3100. doi: 10.1121/1.420498http://doi.org/10.1121/1.420498
Zhan DZ, Zhao HF, Xu W, 2014. Non-linear processing based on dolphin inspired real LFM signals for enhanced delay-Doppler resolution. OCEANS, p.1-7. doi: 10.1109/oceans-taipei.2014.6964562http://doi.org/10.1109/oceans-taipei.2014.6964562
Zhang BB, Hu YC, Wang HY, et al., 2018. Underwater source localization using TDOA and FDOA measurements with unknown propagation speed and sensor parameter errors. IEEE Access, 6:36645-36661. doi: 10.1109/ACCESS.2018.2852636http://doi.org/10.1109/ACCESS.2018.2852636
关联资源
相关文章
相关作者
相关机构