FOLLOWUS
1.Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
2.Mechanical and Electrical Engineering Department, Zhejiang Tongji Vocational College of Science and Technology, Hangzhou 311231, China
3.Suzhou Institute of Metrology, Suzhou 215004, China
E-mail: S20010811027@cjlu.edu.cn;
wy@zjtongji.edu.cn;
blackknight@cjlu.edu.cn;
fangxy@szjl.com.cn;
‡Corresponding authors
纸质出版日期:2022-12,
网络出版日期:2022-07-26,
收稿日期:2022-02-13,
录用日期:2022-05-09
Scan QR Code
集成增强主动学习混合判别分析模型及其在半监督故障分类中的应用[J]. 信息与电子工程前沿(英文), 2022,23(12):1814-1827.
WEIJUN WANG, YUN WANG, JUN WANG, et al. Ensemble enhanced active learning mixture discriminant analysis model and its application for semi-supervised fault classification. [J]. Frontiers of information technology & electronic engineering, 2022, 23(12): 1814-1827.
集成增强主动学习混合判别分析模型及其在半监督故障分类中的应用[J]. 信息与电子工程前沿(英文), 2022,23(12):1814-1827. DOI: 10.1631/FITEE.2200053.
WEIJUN WANG, YUN WANG, JUN WANG, et al. Ensemble enhanced active learning mixture discriminant analysis model and its application for semi-supervised fault classification. [J]. Frontiers of information technology & electronic engineering, 2022, 23(12): 1814-1827. DOI: 10.1631/FITEE.2200053.
As an indispensable part of process monitoring
the performance of fault classification relies heavily on the sufficiency of process knowledge. However
data labels are always difficult to acquire because of the limited sampling condition or expensive laboratory analysis
which may lead to deterioration of classification performance. To handle this dilemma
a new semi-supervised fault classification strategy is performed in which enhanced active learning is employed to evaluate the value of each unlabeled sample with respect to a specific labeled dataset. Unlabeled samples with large values will serve as supplementary information for the training dataset. In addition
we introduce several reasonable indexes and criteria
and thus human labeling interference is greatly reduced. Finally
the fault classification effectiveness of the proposed method is evaluated using a numerical example and the Tennessee Eastman process.
Semi-supervisedActive learningEnsemble learningMixture discriminant analysisFault classification
Abellán J, Masegosa AR, 2010. Bagging decision trees on data sets with classification noise. Proc 6th Int Symp on Foundations of Information and Knowledge Systems, p.248-265. doi: 10.1007/978-3-642-11829-6_17http://doi.org/10.1007/978-3-642-11829-6_17
Abramson N, Braverman D, Sebestyen G, 1963. Pattern recognition and machine learning. IEEE Trans Inform Theory, 9(4):257-261. doi: 10.1109/TIT.1963.1057854http://doi.org/10.1109/TIT.1963.1057854
Araya DB, Grolinger K, ElYamany HF, et al., 2017. An ensemble learning framework for anomaly detection in building energy consumption. Energy Build, 144:191-206. doi: 10.1016/j.enbuild.2017.02.058http://doi.org/10.1016/j.enbuild.2017.02.058
Blum A, Chawla S, 2001. Learning from labeled and unlabeled data using graph mincuts. Proc 18th Int Conf on Machine Learning, p.19-26.
Botre C, Mansouri M, Karim MN, et al., 2017. Multiscale PLS-based GLRT for fault detection of chemical processes. J Loss Prev Process Ind, 46:143-153. doi: 10.1016/j.jlp.2017.01.008http://doi.org/10.1016/j.jlp.2017.01.008
Bouveyron C, Girard S, 2009. Robust supervised classification with mixture models: learning from data with uncertain labels. Patt Recogn, 42(11):2649-2658. doi: 10.1016/j.patcog.2009.03.027http://doi.org/10.1016/j.patcog.2009.03.027
Chapelle O, Sindhwani V, Sathiya Keerthi S, 2006. Branch and bound for semi-supervised support vector machines. Proc 19th Int Conf on Neural Information Processing Systems, p.217-224. doi: 10.5555/2976456.2976484http://doi.org/10.5555/2976456.2976484
Chen X, Wang ZP, Zhang Z, et al., 2018. A semi-supervised approach to bearing fault diagnosis under variable conditions towards imbalanced unlabeled data. Sensors, 18(7):2097. doi: 10.3390/s18072097http://doi.org/10.3390/s18072097
Chiang LH, Russell EL, Braatz RD, 2000. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis. Chemom Intell Lab Syst, 50(2):243-252. doi: 10.1016/S0169-7439(99)00061-1http://doi.org/10.1016/S0169-7439(99)00061-1
Chiang LH, Kotanchek ME, Kordon AK, 2004. Fault diagnosis based on Fisher discriminant analysis and support vector machines. Comput Chem Eng, 28(8):1389-1401. doi: 10.1016/j.compchemeng.2003.10.002http://doi.org/10.1016/j.compchemeng.2003.10.002
Cui XD, Huang J, Chien JT, 2012. Multi-view and multi-objective semi-supervised learning for HMM-based automatic speech recognition. IEEE Trans Audio Speech Lang Process, 20(7):1923-1935. doi: 10.1109/TASL.2012.2191955http://doi.org/10.1109/TASL.2012.2191955
Deng XG, Liu XY, Cao YP, et al., 2022. Incipient fault detection for dynamic chemical processes based on enhanced CVDA integrated with probability information and fault-sensitive features. J Process Contr, 114:29-41. doi: 10.1016/j.jprocont.2022.04.001http://doi.org/10.1016/j.jprocont.2022.04.001
Dietterich TG, 2000. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach Learn, 40(2):139-157. doi: 10.1023/A:1007607513941http://doi.org/10.1023/A:1007607513941
Dong YN, Qin SJ, 2018. A novel dynamic PCA algorithm for dynamic data modeling and process monitoring. J Process Contr, 67:1-11. doi: 10.1016/j.jprocont.2017.05.002http://doi.org/10.1016/j.jprocont.2017.05.002
Downs JJ, Vogel EF, 1993. A plant-wide industrial process control problem. Comput Chem Eng, 17(3):245-255. doi: 10.1016/0098-1354(93)80018-Ihttp://doi.org/10.1016/0098-1354(93)80018-I
Farajzadeh-Zanjani M, Hallaji E, Razavi-Far R, et al., 2021. Adversarial semi-supervised learning for diagnosing faults and attacks in power grids. IEEE Trans Smart Grid, 12(4):3468-3478. doi: 10.1109/TSG.2021.3061395http://doi.org/10.1109/TSG.2021.3061395
Feng J, Wang J, Han ZY, 2013. Process monitoring for chemical process based on semi-supervised principal component analysis. Proc 25th Chinese Control and Decision Conf, p.4282-4286. doi: 10.1109/CCDC.2013.6561704http://doi.org/10.1109/CCDC.2013.6561704
Fraley C, Raftery AE, 2002. Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc, 97(458):611-631. doi: 10.1198/016214502760047131http://doi.org/10.1198/016214502760047131
Ge ZQ, 2016. Supervised latent factor analysis for process data regression modeling and soft sensor application. IEEE Trans Contr Syst Technol, 24(3):1004-1011. doi: 10.1109/TCST.2015.2473817http://doi.org/10.1109/TCST.2015.2473817
Ge ZQ, 2017. Review on data-driven modeling and monitoring for plant-wide industrial processes. Chemom Intell Lab Syst, 171:16-25. doi: 10.1016/j.chemolab.2017.09.021http://doi.org/10.1016/j.chemolab.2017.09.021
Ge ZQ, 2018. Process data analytics via probabilistic latent variable models: a tutorial review. Ind Eng Chem Res, 57(38):12646-12661. doi: 10.1021/acs.iecr.8b02913http://doi.org/10.1021/acs.iecr.8b02913
Ge ZQ, Song ZH, Gao FR, 2013. Review of recent research on data-based process monitoring. Ind Eng Chem Res, 52(10):3543-3562. doi: 10.1021/ie302069qhttp://doi.org/10.1021/ie302069q
Ge ZQ, Song ZH, Ding SX, et al., 2017. Data mining and analytics in the process industry: the role of machine learning. IEEE Access, 5:20590-20616. doi: 10.1109/ACCESS.2017.2756872http://doi.org/10.1109/ACCESS.2017.2756872
Hady MFA, Schwenker F, 2010. Combining committee-based semi-supervised learning and active learning. J Comput Sci Technol, 25(4):681-698. doi: 10.1007/s11390-010-9357-6http://doi.org/10.1007/s11390-010-9357-6
Harkat MF, Mansouri M, Nounou MN, et al., 2019. Fault detection of uncertain chemical processes using interval partial least squares-based generalized likelihood ratio test. Inform Sci, 490:265-284. doi: 10.1016/j.ins.2019.03.068http://doi.org/10.1016/j.ins.2019.03.068
Hastie T, Tibshirani R, 1996. Discriminant analysis by Gaussian mixtures. J Roy Stat Soc Ser B, 58(1):155-176. doi: 10.1111/j.2517-6161.1996.tb02073.xhttp://doi.org/10.1111/j.2517-6161.1996.tb02073.x
He YL, Li K, Zhang N, et al., 2021. Fault diagnosis using improved discrimination locality preserving projections integrated with sparse autoencoder. IEEE Trans Instrum Meas, 70:3527108. doi: 10.1109/TIM.2021.3125975http://doi.org/10.1109/TIM.2021.3125975
Huang CC, Chen T, Yao Y, 2013. Mixture discriminant monitoring: a hybrid method for statistical process monitoring and fault diagnosis/isolation. Ind Eng Chem Res, 52(31):10720-10731. doi: 10.1021/ie400418chttp://doi.org/10.1021/ie400418c
Ipeirotis PG, Provost F, Wang J, 2010. Quality management on Amazon Mechanical Turk. Proc ACM SIGKDD Workshop on Human Computation, p.64-67. doi: 10.1145/1837885.1837906http://doi.org/10.1145/1837885.1837906
Jin YR, Qin CJ, Huang YX, et al., 2021. Actual bearing compound fault diagnosis based on active learning and decoupling attentional residual network. Measurement, 173:108500. doi: 10.1016/j.measurement.2020.108500http://doi.org/10.1016/j.measurement.2020.108500
Kalantar B, Al-Najjar HAH, Pradhan B, et al., 2019. Optimized conditioning factors using machine learning techniques for groundwater potential mapping. Water, 11(9):1909. doi: 10.3390/w11091909http://doi.org/10.3390/w11091909
Liu J, Song CY, Zhao J, 2018. Active learning based semi-supervised exponential discriminant analysis and its application for fault classification in industrial processes. Chemom Intell Lab Syst, 180:42-53. doi: 10.1016/j.chemolab.2018.07.003http://doi.org/10.1016/j.chemolab.2018.07.003
Liu J, Song CY, Zhao J, et al., 2020. Manifold-preserving sparse graph-based ensemble FDA for industrial label-noise fault classification. IEEE Trans Instrum Meas, 69(6):2621-2634. doi: 10.1109/TIM.2019.2930157http://doi.org/10.1109/TIM.2019.2930157
Liu JW, Liu Y, Luo XL, 2015. Semi-supervised learning methods. Chin J Comput, 38(8):1592-1617 (in Chinese). doi: 10.11897/SP.J.1016.2015.01592http://doi.org/10.11897/SP.J.1016.2015.01592
Liu Y, Ge ZQ, 2018. Weighted random forests for fault classification in industrial processes with hierarchical clustering model selection. J Process Contr, 64:62-70. doi: 10.1016/j.jprocont.2018.02.005http://doi.org/10.1016/j.jprocont.2018.02.005
MacGregor J, Cinar A, 2012. Monitoring, fault diagnosis, fault-tolerant control and optimization: data driven methods. Comput Chem Eng, 47:111-120. doi: 10.1016/j.compchemeng.2012.06.017http://doi.org/10.1016/j.compchemeng.2012.06.017
Pu XK, Li CG, 2021. Probabilistic information-theoretic discriminant analysis for industrial label-noise fault diagnosis. IEEE Trans Ind Inform, 17(4):2664-2674. doi: 10.1109/TII.2020.3001335http://doi.org/10.1109/TII.2020.3001335
Raina R, Battle A, Lee H, et al., 2007. Self-taught learning: transfer learning from unlabeled data. Proc 24th Int Conf on Machine Learning, p.759-766. doi: 10.1145/1273496.1273592http://doi.org/10.1145/1273496.1273592
Raykar VC, Yu SP, Zhao LH, et al., 2010. Learning from crowds. J Mach Learn Res, 11:1297-1322. doi: 10.5555/1756006.1859894http://doi.org/10.5555/1756006.1859894
Schwenker F, Trentin E, 2014. Pattern classification and clustering: a review of partially supervised learning approaches. Patt Recogn Lett, 37:4-14. doi: 10.1016/j.patrec.2013.10.017http://doi.org/10.1016/j.patrec.2013.10.017
Settles B, 2012. Active Learning. Morgan & Claypool Publishers, USA. doi: 10.2200/S00429ED1V01Y201207AIM018http://doi.org/10.2200/S00429ED1V01Y201207AIM018
Shao WM, Tian XM, 2017. Semi-supervised selective ensemble learning based on distance to model for nonlinear soft sensor development. Neurocomputing, 222:91-104. doi: 10.1016/j.neucom.2016.10.005http://doi.org/10.1016/j.neucom.2016.10.005
Shao WM, Ge ZQ, Song ZH, 2019a. Semi-supervised mixture of latent factor analysis models with application to online key variable estimation. Contr Eng Pract, 84:32- 47. doi: 10.1016/j.conengprac.2018.11.008http://doi.org/10.1016/j.conengprac.2018.11.008
Shao WM, Ge ZQ, Song ZH, et al., 2019b. Nonlinear industrial soft sensor development based on semi-supervised probabilistic mixture of extreme learning machines. Contr Eng Pract, 91:104098. doi: 10.1016/j.conengprac.2019.07.016http://doi.org/10.1016/j.conengprac.2019.07.016
Snow R, O’Connor B, Jurafsky D, et al., 2008. Cheap and fast—but is it good? Evaluating non-expert annotations for natural language tasks. Proc Conf on Empirical Methods in Natural Language Processing, p.254-263.
Wang J, Feng J, Han ZY, 2014. Fault detection for the class imbalance problem in semiconductor manufacturing processes. J Circ Syst Comput, 23(4):1450049. doi: 10.1142/S0218126614500492http://doi.org/10.1142/S0218126614500492
Wang JB, Shao WM, Song ZH, 2019. Semi-supervised variational Bayesian student's t mixture regression and robust inferential sensor application. Contr Eng Pract, 92:104155. doi: 10.1016/j.conengprac.2019.104155http://doi.org/10.1016/j.conengprac.2019.104155
Wang L, Tian H, Zhang H, 2021. Soft fault diagnosis of analog circuits based on semi-supervised support vector machine. Analog Integr Circ Signal Process, 108(2):305-315. doi: 10.1007/s10470-021-01851-whttp://doi.org/10.1007/s10470-021-01851-w
Yan ZB, Huang CC, Yao Y, 2014. Semi-supervised mixture discriminant monitoring for chemical batch processes. Chemom Intell Lab Syst, 134:10-22. doi: 10.1016/j.chemolab.2014.03.002http://doi.org/10.1016/j.chemolab.2014.03.002
Yao L, Ge ZQ, 2017. Locally weighted prediction methods for latent factor analysis with supervised and semisupervised process data. IEEE Trans Autom Sci Eng, 14(1):126-138. doi: 10.1109/TASE.2016.2608914http://doi.org/10.1109/TASE.2016.2608914
Yin LL, Wang HG, Fan WH, et al., 2018. Combining active learning and Fisher discriminant analysis for the semi-supervised process monitoring. IFAC-PapersOnLine, 51(21):147-151. doi: 10.1016/j.ifacol.2018.09.407http://doi.org/10.1016/j.ifacol.2018.09.407
Yin LL, Wang HG, Fan WH, et al., 2019. Incorporate active learning to semi-supervised industrial fault classification. J Process Contr, 78:88-97. doi: 10.1016/j.jprocont.2019.04.008http://doi.org/10.1016/j.jprocont.2019.04.008
Yuen MC, King I, Leung KS, 2011. A survey of crowdsourcing systems. Proc IEEE 3rd Int Conf on Privacy, Security, Risk and Trust and IEEE 3rd Int Conf on Social Computing, p.766-773. doi: 10.1109/PASSAT/SocialCom.2011.203http://doi.org/10.1109/PASSAT/SocialCom.2011.203
Zaman SMK, Liang XD, 2021. An effective induction motor fault diagnosis approach using graph-based semi-supervised learning. IEEE Access, 9:7471-7482. doi: 10.1109/ACCESS.2021.3049193http://doi.org/10.1109/ACCESS.2021.3049193
Zhang N, Xu Y, Zhu QX, et al., 2022. Improved locality preserving projections based on heat-kernel and cosine weights for fault classification in complex industrial processes. IEEE Trans Reliab, early access. doi: 10.1109/TR.2021.3139539http://doi.org/10.1109/TR.2021.3139539
Zheng JH, Wang HJ, Song ZH, et al., 2019. Ensemble semi-supervised Fisher discriminant analysis model for fault classification in industrial processes. ISA Trans, 92:109-117. doi: 10.1016/j.isatra.2019.02.021http://doi.org/10.1016/j.isatra.2019.02.021
Zheng JH, Zhu JL, Chen GJ, et al., 2020. Dynamic Bayesian network for robust latent variable modeling and fault classification. Eng Appl Artif Intell, 89:103475. doi: 10.1016/j.engappai.2020.103475http://doi.org/10.1016/j.engappai.2020.103475
Zhong K, Han M, Qiu T, et al., 2020. Fault diagnosis of complex processes using sparse kernel local Fisher discriminant analysis. IEEE Trans Neur Netw Learn Syst, 31(5):1581-1591. doi: 10.1109/TNNLS.2019.2920903http://doi.org/10.1109/TNNLS.2019.2920903
Zou Y, Yu ZD, Liu XF, et al., 2019. Confidence regularized self-training. Proc IEEE/CVF Int Conf on Computer Vision, p.5981-5990. doi: 10.1109/ICCV.2019.00608http://doi.org/10.1109/ICCV.2019.00608
关联资源
相关文章
相关作者
相关机构