Your Location:
Home >
Browse articles >
集成增强主动学习混合判别分析模型及其在半监督故障分类中的应用
常规文章 | Updated:2022-12-16
    • 集成增强主动学习混合判别分析模型及其在半监督故障分类中的应用

      Enhanced Publication
    • Ensemble enhanced active learning mixture discriminant analysis model and its application for semi-supervised fault classification

    • 信息与电子工程前沿(英文)   2022年23卷第12期 页码:1814-1827
    • DOI:10.1631/FITEE.2200053    

      中图分类号: TP277
    • 纸质出版日期:2022-12

      网络出版日期:2022-07-26

      收稿日期:2022-02-13

      录用日期:2022-05-09

    Scan QR Code

  • 集成增强主动学习混合判别分析模型及其在半监督故障分类中的应用[J]. 信息与电子工程前沿(英文), 2022,23(12):1814-1827. DOI: 10.1631/FITEE.2200053.

    WEIJUN WANG, YUN WANG, JUN WANG, et al. Ensemble enhanced active learning mixture discriminant analysis model and its application for semi-supervised fault classification. [J]. Frontiers of information technology & electronic engineering, 2022, 23(12): 1814-1827. DOI: 10.1631/FITEE.2200053.

  •  
  •  

0

浏览量

72

Downloads

0

CSCD

>
文章被引用时,请邮件提醒。
Submit
工具集
下载
参考文献导出
分享
收藏
添加至我的专辑

相关文章

暂无数据

相关作者

Jun Wang
Xinyun Fang
Yuchen He
Weijun Wang
Yunqing Mao
Tianlei Hu
Ke Chen‡
Shengyuan Liu

相关机构

Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province China Jiliang University
Key Lab of Intelligent Computing Based Big Data of Zhejiang Province, Zhejiang University
City Cloud Science and Technology (China) Co., Ltd.
School of Information and Electronics, Beijing Institute of Technology
State Key Laboratory of Millimeter Waves, Southeast University
0