
FOLLOWUS
School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China
E-mail: hypatia@bupt.edu.cn
zhongnanma@bupt.edu.cn
‡ Corresponding author
收稿:2024-06-01,
修回:2024-11-18,
网络出版:2025-09-10,
纸质出版:2025-09
Scan QR Code
桂嘉弈, 马中楠, 周浩, 等. 智能运维(AIOps)中时间异构数据深度异常检测方法综述[J]. 信息与电子工程前沿(英文), 2025,26(9):1551-1576.
Jiayi GUI, Zhongnan MA, Hao ZHOU, et al. Deep anomaly detection of temporal heterogeneous data in AIOps: a survey[J]. Frontiers of information technology & electronic engineering, 2025, 26(9): 1551-1576.
桂嘉弈, 马中楠, 周浩, 等. 智能运维(AIOps)中时间异构数据深度异常检测方法综述[J]. 信息与电子工程前沿(英文), 2025,26(9):1551-1576. DOI: 10.1631/FITEE.2400467.
Jiayi GUI, Zhongnan MA, Hao ZHOU, et al. Deep anomaly detection of temporal heterogeneous data in AIOps: a survey[J]. Frontiers of information technology & electronic engineering, 2025, 26(9): 1551-1576. DOI: 10.1631/FITEE.2400467.
第五代(5G)移动通信及物联网(IoT)技术的进步推动智能应用的发展,但也使得这些网络日益复杂化,并容易遭受各类定向攻击。为监测和识别网络异常事件,研究人员提出多种异常检测(AD)模型,尤其是基于深度学习技术的模型。然而,由于网络运营商缺乏对这些黑箱系统的专业知识,这些模型的部署和使用存在诸多挑战。本文对通信网络领域现有AD模型和方法进行了系统性综述。基于模型原理和结构,将这些模型分为4个方法论类别,并重点强调近期在AD领域中展现巨大潜力的大语言模型的作用。此外,在以下4个应用领域对相关模型展开深入探讨:网络流量监控、网络系统日志分析、云边服务提供以及物联网安全。基于以上应用需求,剖析了当前面临的挑战,并就未来研究方向提出见解,涵盖鲁棒性、可解释性以及大语言模型在AD中的集成作用。
The advancement of the fifth generation (5G) mobile communication and Internet of Things (IoT) has facilitated the development of intelligent applications
but has also rendered these networks increasingly complex and vulnerable to various targeted attacks. Numerous anomaly detection (AD) models
particularly those using deep learning technologies
have been proposed to monitor and identify network anomalous events. However
the implementation of these models poses challenges for network operators due to lacking expert knowledge of these black-box systems. In this study
we present a comprehensive review of current AD models and methods in the field of communication networks. We categorize these models into four methodological groups based on their underlying principles and structures
with particular emphasis on the role of recent promising large language models (LLMs) in the field of AD. Additionally
we provide a detailed discussion of the models in the following four application areas: network traffic monitoring
networking system log analysis
cloud and edge service provisioning
and IoT security. Based on these application requirements
we examine the current challenges and offer insights into future research directions
including robustness
explainability
and the integration of LLMs for AD.
Aboubacar A , El Machkouri M , 2020 . Recursive kernel density estimation for time series . IEEE Trans Inform Theory , 66 ( 10 ): 6378 - 6388 . https://doi.org/10.1109/TIT.2020.3014797 https://doi.org/10.1109/TIT.2020.3014797
Abrams L , 2020 . CenturyLink routing issue led to outages on Hulu, Steam, Discord, more . https://www.bleepingcomputer.com/news/technology/centurylink-routing-issue-led-to-outages-on-hulu-steam-discord-more https://www.bleepingcomputer.com/news/technology/centurylink-routing-issue-led-to-outages-on-hulu-steam-discord-more [Accessed on Apr. 1, 2024 ] .
Ahmed CM , Palleti VR , Mathur AP , 2017 . WADI: a water distribution testbed for research in the design of secure cyber physical systems . Proc 3 rd Int Workshop on Cyber-Physical Systems for Smart Water Networks , p. 25 - 28 . https://doi.org/10.1145/3055366.3055375 https://doi.org/10.1145/3055366.3055375
Ahmed M , Mahmood AN , Hu JK , 2016 . A survey of network anomaly detection techniques . J Netw Comput Appl , 60 : 19 - 31 . https://doi.org/10.1016/j.jnca.2015.11.016 https://doi.org/10.1016/j.jnca.2015.11.016
Aldribi A , Traore I , Moa B , 2018 . Data sources and datasets for cloud intrusion detection modeling and evaluation . In: Mishra BSP , Das H , Dehuri S , et al. (Eds.), Cloud Computing for Optimization: Foundations, Applications, and Challenges . Springer , Cham , p. 333 - 366 . https://doi.org/10.1007/978-3-319-73676-1_13 https://doi.org/10.1007/978-3-319-73676-1_13
Al-Hawawreh M , Sitnikova E , Aboutorab N , 2022 . X-IIoTID: a connectivity-agnostic and device-agnostic intrusion data set for Industrial Internet of Things . IEEE Int Things J , 9 ( 5 ): 3962 - 3977 . https://doi.org/10.1109/JIOT.2021.3102056 https://doi.org/10.1109/JIOT.2021.3102056
Alsaedi A , Moustafa N , Tari Z , et al. , 2020 . TON_IoT telemetry dataset: a new generation dataset of IoT and IIoT for data-driven intrusion detection systems . IEEE Access , 8 : 165130 - 165150 . https://doi.org/10.1109/ACCESS.2020.3022862 https://doi.org/10.1109/ACCESS.2020.3022862
Amer M , Goldstein M , Abdennadher S , 2013 . Enhancing one-class support vector machines for unsupervised anomaly detection . Proc ACM SIGKDD Workshop on Outlier Detection and Description , p. 8 - 15 . https://doi.org/10.1145/2500853.2500857 https://doi.org/10.1145/2500853.2500857
Aminikhanghahi S , Cook DJ , 2017 . A survey of methods for time series change point detection . Knowl Inform Syst , 51 ( 2 ): 339 - 367 . https://doi.org/10.1007/s10115-016-0987-z https://doi.org/10.1007/s10115-016-0987-z
Andresini G , Appice A , Malerba D , 2021 . Autoencoder-based deep metric learning for network intrusion detection . Inform Sci , 569 : 706 - 727 . https://doi.org/10.1016/j.ins.2021.05.016 https://doi.org/10.1016/j.ins.2021.05.016
Ao SI , Fayek H , 2023 . Continual deep learning for time series modeling . Sensors , 23 ( 16 ): 7167 . https://doi.org/10.3390/s23167167 https://doi.org/10.3390/s23167167
Audibert J , Michiardi P , Guyard F , et al. , 2020 . USAD: unsupervised anomaly detection on multivariate time series . Proc 26 th ACM SIGKDD Int Conf on Knowledge Discovery & Data Mining , p. 3395 - 3404 . https://doi.org/10.1145/3394486.3403392 https://doi.org/10.1145/3394486.3403392
Bai JZ , Bai S , Chu YF , et al. , 2023 . QWEN technical report . https://doi.org/10.48550/arXiv.2309.16609 https://doi.org/10.48550/arXiv.2309.16609
Balasubramanian P , Seby J , Kostakos P , 2023 . Transformer-based LLMs in cybersecurity: an in-depth study on log anomaly detection and conversational defense mechanisms . IEEE Int Conf on Big Data , p. 3590 - 3599 . https://doi.org/10.1109/BigData59044.2023.10386976 https://doi.org/10.1109/BigData59044.2023.10386976
Bansod SD , Nandedkar AV , 2020 . Crowd anomaly detection and localization using histogram of magnitude and momentum . Vis Comput , 36 ( 3 ): 609 - 620 . https://doi.org/10.1007/s00371-019-01647-0 https://doi.org/10.1007/s00371-019-01647-0
Basati A , Faghih MM , 2023 . APAE: an IoT intrusion detection system using asymmetric parallel auto-encoder . Neur Comput Appl , 35 ( 7 ): 4813 - 4833 . https://doi.org/10.1007/s00521-021-06011-9 https://doi.org/10.1007/s00521-021-06011-9
Bochner S , Chandrasekharan K , 1949 . Fourier Transforms . Princeton University Press , Princeton, USA .
Bowman B , Laprade C , Ji YD , et al. , 2020 . Detecting lateral movement in enterprise computer networks with unsupervised graph AI . 23 rd Int Symp on Research in Attacks, Intrusions and Defenses , p. 257 - 268 .
Brown TB , Mann B , Ryder N , et al. , 2020 . Language models are few-shot learners . Proc 34 th Int Conf on Neural Information Processing Systems , p. 1877 - 1901 .
Chand N , Mishra P , Krishna CR , et al. , 2016 . A comparative analysis of SVM and its stacking with other classification algorithm for intrusion detection . Int Conf on Advances in Computing, Communication, & Automation , p. 1 - 6 . https://doi.org/10.1109/ICACCA.2016.7578859 https://doi.org/10.1109/ICACCA.2016.7578859
Chandola V , Banerjee A , Kumar V , 2009 . Anomaly detection: a survey . ACM Comput Surv , 41 ( 3 ): 15 . https://doi.org/10.1145/1541880.1541882 https://doi.org/10.1145/1541880.1541882
Chang C , Peng WC , Chen TF , 2024 . LLM4TS: two-stage fine-tuning for time-series forecasting with pre-trained LLMs . https://doi.org/10.48550/arXiv.2308.08469 https://doi.org/10.48550/arXiv.2308.08469
Chen M , Zheng AX , Lloyd J , et al. , 2004 . Failure diagnosis using decision trees . Int Conf on Autonomic Computing , p. 36 - 43 . https://doi.org/10.1109/ICAC.2004.1301345 https://doi.org/10.1109/ICAC.2004.1301345
Chen ZH , Zheng LN , Lu C , et al. , 2023 . ChatGPT informed graph neural network for stock movement prediction . https://arxiv.org/abs/2306.03763 https://arxiv.org/abs/2306.03763
Chen ZM , Yeo CK , Lee BS , et al. , 2018 . Autoencoder-based network anomaly detection . Wireless Telecommunications Symp , p. 1 - 5 . https://doi.org/10.1109/WTS.2018.8363930 https://doi.org/10.1109/WTS.2018.8363930
Choi K , Yi JH , Park C , et al. , 2021 . Deep learning for anomaly detection in time-series data: review, analysis, and guidelines . IEEE Access , 9 : 120043 - 120065 . https://doi.org/10.1109/ACCESS.2021.3107975 https://doi.org/10.1109/ACCESS.2021.3107975
Chouhan N , Khan A , Khan HUR , 2019 . Network anomaly detection using channel boosted and residual learning based deep convolutional neural network . Appl Soft Comput , 83 : 105612 . https://doi.org/10.1016/j.asoc.2019.105612 https://doi.org/10.1016/j.asoc.2019.105612
Cook AA , Mook AA G , Fan Z , 2020 . Anomaly detection for IoT time-series data: a survey . IEEE Int Things J , 7 ( 7 ): 6481 - 6494 . https://doi.org/10.1109/jiot.2019.2958185 https://doi.org/10.1109/jiot.2019.2958185
Cup K , 2007 . KDD Cup 1999 Data . https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html [Accessed on Apr. 1, 2024 ] .
Dai L , Chen WC , Liu YW , et al. , 2022 . Switching Gaussian mixture variational RNN for anomaly detection of diverse CDN websites . IEEE Conf on Computer Communications , p. 300 - 309 . https://doi.org/10.1109/INFOCOM48880.2022.9796836 https://doi.org/10.1109/INFOCOM48880.2022.9796836
Dang WX , Zhou BY , Wei LW , et al. , 2021 . TS-Bert: time series anomaly detection via pre-training model Bert . 21 st Int Conf on Computational Science , p. 209 - 223 . https://doi.org/10.1007/978-3-030-77964-1_17 https://doi.org/10.1007/978-3-030-77964-1_17
Dang YN , Lin QW , Huang P , 2019 . AIOps: real-world challenges and research innovations . IEEE/ACM 41 st Int Conf on Software Engineering: Companion Proceedings , p. 4 - 5 . https://doi.org/10.1109/ICSE-Companion.2019.00023 https://doi.org/10.1109/ICSE-Companion.2019.00023
Darban ZZ , Yang YY , Webb GI , et al. , 2024 . DACAD: domain adaptation contrastive learning for anomaly detection in multivariate time series . https://doi.org/10.48550/arXiv.2404.11269 https://doi.org/10.48550/arXiv.2404.11269
DataSetsAI , 2020 . Water Pumps . https://datasets.ai/datasets/water-pumps https://datasets.ai/datasets/water-pumps [Accessed on Aug. 17, 2025 ] .
Dhadhania A , Bhatia J , Mehta R , et al. , 2024 . Unleashing the power of SDN and GNN for network anomaly detection: state-of-the-art, challenges, and future directions . Secur Priv , 7 ( 1 ): e337 . https://doi.org/10.1002/spy2.337 https://doi.org/10.1002/spy2.337
Diaf A , Korba AA , Karabadji NE , et al. , 2024 . Beyond detection: leveraging large language models for cyber attack prediction in IoT networks . 20 th Int Conf on Distributed Computing in Smart Systems and the Internet of Things , p. 117 - 123 . https://doi.org/10.1109/DCOSS-IoT61029.2024.00026 https://doi.org/10.1109/DCOSS-IoT61029.2024.00026
Du M , Li FF , Zheng GN , et al. , 2017 . DeepLog: anomaly detection and diagnosis from system logs through deep learning . Proc ACM SIGSAC Conf on Computer and Communications Security , p. 1285 - 1298 . https://doi.org/10.1145/3133956.3134015 https://doi.org/10.1145/3133956.3134015
Du ZX , Qian YJ , Liu X , et al. , 2022 . GLM: general language model pretraining with autoregressive blank infilling . https://doi.org/10.48550/arXiv.2103.10360 https://doi.org/10.48550/arXiv.2103.10360
Duan XY , Fu Y , Wang K , 2023 . Network traffic anomaly detection method based on multi-scale residual classifier . Comput Commun , 198 : 206 - 216 . https://doi.org/10.1016/j.comcom.2022.10.024 https://doi.org/10.1016/j.comcom.2022.10.024
Egersdoerfer C , Zhang D , Dai D , 2023 . Early exploration of using ChatGPT for log-based anomaly detection on parallel file systems logs . Proc 32 nd Int Symp on High-Performance Parallel and Distributed Computing , p. 315 - 316 . https://doi.org/10.1145/3588195.3595943 https://doi.org/10.1145/3588195.3595943
Ekambaram V , Jati A , Dayama P , et al. , 2024 . Tiny time mixers (TTMs): fast pre-trained models for enhanced zero/few-shot forecasting of multivariate time series . https://doi.org/10.48550/arXiv.2401.03955 https://doi.org/10.48550/arXiv.2401.03955
Esling P , Agon C , 2012 . Time-series data mining . ACM Comput Surv , 45 ( 1 ): 12 . https://doi.org/10.1145/2379776.2379788 https://doi.org/10.1145/2379776.2379788
Fang YQ , Yap PT , Lin WL , et al. , 2024 . Source-free unsupervised domain adaptation: a survey . Neur Netw , 174 : 106230 . https://doi.org/10.1016/j.neunet.2024.106230 https://doi.org/10.1016/j.neunet.2024.106230
Farrukh YA , Wali S , Khan I , et al. , 2024 . XG-NID: dual-modality network intrusion detection using a heterogeneous graph neural network and large language model . https://doi.org/10.48550/arXiv.2408.16021 https://doi.org/10.48550/arXiv.2408.16021
Feng C , Tian PW , 2021 . Time series anomaly detection for cyber-physical systems via neural system identification and Bayesian filtering . Proc 27 th ACM SIGKDD Conf on Knowledge Discovery & Data Mining , p. 2858 - 2867 . https://doi.org/10.1145/3447548.3467137 https://doi.org/10.1145/3447548.3467137
Ferrag MA , Friha O , Hamouda D , et al. , 2022 . Edge-IIoTset: a new comprehensive realistic cyber security dataset of IoT and IIoT applications for centralized and federated learning . IEEE Access , 10 : 40281 - 40306 . https://doi.org/10.1109/ACCESS.2022.3165809 https://doi.org/10.1109/ACCESS.2022.3165809
Gao S , Huang YF , Zhang S , et al. , 2020 . Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation . J Hydrol , 589 : 125188 . https://doi.org/10.1016/j.jhydrol.2020.125188 https://doi.org/10.1016/j.jhydrol.2020.125188
Gao SH , Koker T , Queen O , et al. , 2024 . UniTS: a unified multi-task time series model . https://doi.org/10.48550/arXiv.2403.00131 https://doi.org/10.48550/arXiv.2403.00131
Georgiou T , Liu Y , Chen W , et al. , 2020 . A survey of traditional and deep learning-based feature descriptors for high dimensional data in computer vision . Int J Multimed Inform Retr , 9 ( 3 ): 135 - 170 . https://doi.org/10.1007/s13735-019-00183-w https://doi.org/10.1007/s13735-019-00183-w
Girish L , Rao SKN , 2023 . Anomaly detection in cloud environment using artificial intelligence techniques . Computing , 105 ( 3 ): 675 - 688 . https://doi.org/10.1007/s00607-021-00941-x https://doi.org/10.1007/s00607-021-00941-x
Griffiths TL , Callaway F , Chang MB , et al. , 2019 . Doing more with less: meta-reasoning and meta-learning in humans and machines . Curr Opin Behav Sci , 29 : 24 - 30 . https://doi.org/10.1016/j.cobeha.2019.01.005 https://doi.org/10.1016/j.cobeha.2019.01.005
Gruver N , Finzi M , Qiu SK , et al. , 2024 . Large language models are zero-shot time series forecasters . Proc 37 th Int Conf on Neural Information Processing Systems , p. 19622 - 19635 . https://dl.acm.org/doi/10.5555/3666122.3666983 https://dl.acm.org/doi/10.5555/3666122.3666983
Guigou F , Collet P , Parrend P , 2019 . SCHEDA: lightweight Euclidean-like heuristics for anomaly detection in periodic time series . Appl Soft Comput , 82 : 105594 . https://doi.org/10.1016/j.asoc.2019.105594 https://doi.org/10.1016/j.asoc.2019.105594
Gupta V , Narwariya J , Malhotra P , et al. , 2021 . Continual learning for multivariate time series tasks with variable input dimensions . IEEE Int Conf on Data Mining , p. 161 - 170 . https://doi.org/10.1109/ICDM51629.2021.00026 https://doi.org/10.1109/ICDM51629.2021.00026
Halbouni A , Gunawan TS , Habaebi MH , et al. , 2022 . CNN-LSTM: hybrid deep neural network for network intrusion detection system . IEEE Access , 10 : 99837 - 99849 . https://doi.org/10.1109/ACCESS.2022.3206425 https://doi.org/10.1109/ACCESS.2022.3206425
Han DQ , Wang ZL , Chen WQ , et al. , 2021 . DeepAID: interpreting and improving deep learning-based anomaly detection in security applications . Proc ACM SIGSAC Conf on Computer and Communications Security , p. 3197 - 3217 . https://doi.org/10.1145/3460120.3484589 https://doi.org/10.1145/3460120.3484589
Hawkins DM , 1980 . Identification of Outliers . Springer , Dordrecht, Netherlands . https://doi.org/10.1007/978-94-015-3994-4 https://doi.org/10.1007/978-94-015-3994-4
He Q , Zheng YJ , Zhang CL , et al. , 2020 . MTAD-TF: multivariate time series anomaly detection using the combination of temporal pattern and feature pattern . Complexity , 2020 : 8846608 . https://doi.org/10.1155/2020/8846608 https://doi.org/10.1155/2020/8846608
Heinle A , 2022 . The Canada wide Rogers outage on July 8, 2022: what exactly happened & how can it be prevented ? https://www.coguard.io/post/canada-rogers-outage-root-cause-analysis https://www.coguard.io/post/canada-rogers-outage-root-cause-analysis [Accessed on Apr. 15, 2024 ] .
Hnamte V , Hussain J , 2023 . DCNNBiLSTM: an efficient hybrid deep learning-based intrusion detection system . Telemat Inform Rep , 10 : 100053 . https://doi.org/10.1016/j.teler.2023.100053 https://doi.org/10.1016/j.teler.2023.100053
Houssel PR , Singh P , Layeghy S , et al. , 2024 . Towards explainable network intrusion detection using large language models . https://doi.org/10.48550/arXiv.2408.04342 https://doi.org/10.48550/arXiv.2408.04342
Huang JJ , Kurniawan E , Sun SM , 2022 . Cellular KPI anomaly detection with GAN and time series decomposition . IEEE Int Conf on Communications , p. 4074 - 4079 . https://doi.org/10.1109/ICC45855.2022.9838810 https://doi.org/10.1109/ICC45855.2022.9838810
Hundman K , Constantinou V , Laporte C , et al. , 2018 . Detecting spacecraft anomalies using LSTMS and nonparametric dynamic thresholding . Proc 24 th ACM SIGKDD Int Conf on Knowledge Discovery & Data Mining , p. 387 - 395 . https://doi.org/10.1145/3219819.3219845 https://doi.org/10.1145/3219819.3219845
Hwang RH , Peng MC , Huang CW , et al. , 2020 . An unsupervised deep learning model for early network traffic anomaly detection . IEEE Access , 8 : 30387 - 30399 . https://doi.org/10.1109/ACCESS.2020.2973023 https://doi.org/10.1109/ACCESS.2020.2973023
IMT-2030 (6G) Promotion Group , 2021 . White Paper on 6G Vision and Candidate Technologies. Technical Report .
Jiang AQ , Sablayrolles A , Mensch A , et al. , 2023 . Mistral 7B . https://doi.org/10.48550/arXiv.2310.06825 https://doi.org/10.48550/arXiv.2310.06825
Jiang J , Liu FG , Ng WWY , et al. , 2023 . AERF: adaptive ensemble random fuzzy algorithm for anomaly detection in cloud computing . Comput Commun , 200 : 86 - 94 . https://doi.org/10.1016/j.comcom.2023.01.004 https://doi.org/10.1016/j.comcom.2023.01.004
Jin M , Koh HY , Wen QS , et al. , 2024a . A survey on graph neural networks for time series: forecasting, classification, imputation, and anomaly detection . https://doi.org/10.48550/arXiv.2307.03759 https://doi.org/10.48550/arXiv.2307.03759
Jin M , Wang SY , Ma LT , et al. , 2024b . Time-LLM: time series forecasting by reprogramming large language models . https://doi.org/10.48550/arXiv.2310.01728 https://doi.org/10.48550/arXiv.2310.01728
Khalaf OI , Ogudo KA , Sangeetha SKB , 2022 . Design of graph-based layered learning-driven model for anomaly detection in distributed cloud IoT network . Mob Inform Syst , 2022 : 6750757 . https://doi.org/10.1155/2022/6750757 https://doi.org/10.1155/2022/6750757
Khan MA , 2021 . HCRNNIDS: hybrid convolutional recurrent neural network-based network intrusion detection system . Processes , 9 ( 5 ): 834 . https://doi.org/10.3390/pr9050834 https://doi.org/10.3390/pr9050834
Khatibzadeh L , Bornaee Z , Bafghi AG , 2019 . Applying catastrophe theory for network anomaly detection in cloud computing traffic . Secur Commun Netw , 2019 : 5306395 . https://doi.org/10.1155/2019/5306395 https://doi.org/10.1155/2019/5306395
Koroniotis N , Moustafa N , Sitnikova E , et al. , 2019 . Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: BoT-IoT dataset . Future Gener Comput Syst , 100 : 779 - 796 . https://doi.org/10.1016/j.future.2019.05.041 https://doi.org/10.1016/j.future.2019.05.041
Kourtis MA , Xilouris G , Gardikis G , et al. , 2016 . Statistical-based anomaly detection for NFV services . IEEE Conf on Network Function Virtualization and Software Defined Networks , p. 161 - 166 . https://doi.org/10.1109/NFV-SDN.2016.7919492 https://doi.org/10.1109/NFV-SDN.2016.7919492
KYODO NEWS , 2022 . KDDI network outage affects record 30.91 million users . https://english.kyodonews.net/news/2022/07/57bbb532c4d7-kddi-network-outage-affects-record-3091-million-users.html https://english.kyodonews.net/news/2022/07/57bbb532c4d7-kddi-network-outage-affects-record-3091-million-users.html [Accessed on Apr. 15, 2024 ] .
Lalotra GS , Kumar V , Bhatt A , et al. , 2022 . iReTADS: an intelligent real-time anomaly detection system for cloud communications using temporal data summarization and neural network . Secur Commun Netw , 2022 : 9149164 . https://doi.org/10.1155/2022/9149164 https://doi.org/10.1155/2022/9149164
Le XH , Ho HV , Lee G , et al. , 2019 . Application of long short-term memory (LSTM) neural network for flood forecasting . Water , 11 ( 7 ): 1387 . https://doi.org/10.3390/w11071387 https://doi.org/10.3390/w11071387
Lee MC , Lin JC , Gran EG , 2020 . RePAD: real-time proactive anomaly detection for time series . Proc 34 th Int Conf on Advanced Information Networking and Applications , p. 1291 - 1302 . https://doi.org/10.1007/978-3-030-44041-1_110 https://doi.org/10.1007/978-3-030-44041-1_110
Li D , Chen DC , Goh J , et al. , 2019a . Anomaly detection with generative adversarial networks for multivariate time series . https://doi.org/10.48550/arXiv.1809.04758 https://doi.org/10.48550/arXiv.1809.04758
Li D , Chen DC , Jin BH , et al. , 2019b . MAD-GAN: multivariate anomaly detection for time series data with generative adversarial networks . 28 th Int Conf on Artificial Neural Networks , p. 703 - 716 . https://doi.org/10.1007/978-3-030-30490-4_56 https://doi.org/10.1007/978-3-030-30490-4_56
Li G , Jung JJ , 2023 . Deep learning for anomaly detection in multivariate time series: approaches, applications, and challenges . Inform Fus , 91 : 93 - 102 . https://doi.org/10.1016/j.inffus.2022.10.008 https://doi.org/10.1016/j.inffus.2022.10.008
Li RY , Li Q , Zhang Y , et al. , 2024 . Interpreting unsupervised anomaly detection in security via rule extraction . Proc 37 th Int Conf on Neural Information Processing Systems , p. 62224 - 62243 .
Liang Y , Zhang Y , Sivasubramaniam A , et al. , 2005 . Filtering failure logs for a BlueGene/L prototype . Int Conf on Dependable Systems and Networks , p. 476 - 485 . https://doi.org/10.1109/DSN.2005.50 https://doi.org/10.1109/DSN.2005.50
Liang YL , Zhang YY , Xiong H , et al. , 2007 . Failure prediction in IBM BlueGene/L event logs . 7 th IEEE Int Conf on Data Mining , p. 583 - 588 . https://doi.org/10.1109/ICDM.2007.46 https://doi.org/10.1109/ICDM.2007.46
Lim W , Yong KSC , Lau BT , et al. , 2024 . Future of generative adversarial networks (GAN) for anomaly detection in network security: a review . Comput Secur , 139 : 103733 . https://doi.org/10.1016/j.cose.2024.103733 https://doi.org/10.1016/j.cose.2024.103733
Lin QW , Zhang HY , Lou JG , et al. , 2016 . Log clustering based problem identification for online service systems . Proc 38 th Int Conf on Software Engineering Companion , p. 102 - 111 .
Lin Z , Qu GQ , Chen QY , et al. , 2024 . Pushing large language models to the 6G edge: vision, challenges, and opportunities . https://doi.org/10.48550/arXiv.2309.16739 https://doi.org/10.48550/arXiv.2309.16739
Liu C , Antypenko R , Sushko I , et al. , 2022 . Intrusion detection system after data augmentation schemes based on the VAE and CVAE . IEEE Trans Reliab , 71 ( 2 ): 1000 - 1010 . https://doi.org/10.1109/TR.2022.3164877 https://doi.org/10.1109/TR.2022.3164877
Liu FT , Ting KM , Zhou ZH , 2008 . Isolation forest . 8 th IEEE Int Conf on Data Mining , p. 413 - 422 . https://doi.org/10.1109/ICDM.2008.17 https://doi.org/10.1109/ICDM.2008.17
Liu YL , Tao SM , Meng WB , et al. , 2024 . LogPrompt: prompt engineering towards zero-shot and interpretable log analysis . 46 th IEEE/ACM Int Conf on Software Engineering , p. 364 - 365 . https://doi.org/10.1145/3639478.3643108 https://doi.org/10.1145/3639478.3643108
Lu HM , Wang T , Xu X , et al. , 2022 . Cognitive memory-guided autoencoder for effective intrusion detection in Internet of Things . IEEE Trans Industr Inform , 18 ( 5 ): 3358 - 3366 . https://doi.org/10.1109/TII.2021.3102637 https://doi.org/10.1109/TII.2021.3102637
Lüdtke O , Robitzsch A , West SG , 2020 . Regression models involving nonlinear effects with missing data: a sequential modeling approach using Bayesian estimation . Psychol Methods , 25 ( 2 ): 157 - 181 . https://doi.org/10.1037/met0000233 https://doi.org/10.1037/met0000233
Lüer F , Bohm C , 2024 . Anomaly detection using generative adversarial networks reviewing methodological progress and challenges . ACM SIGKDD Explor Newsl , 25 ( 2 ): 29 - 41 . https://doi.org/10.1145/3655103.3655109 https://doi.org/10.1145/3655103.3655109
Lunardi WT , Lopez MA , Giacalone JP , 2023 . ARCADE: adversarially regularized convolutional autoencoder for network anomaly detection . IEEE Trans Netw Serv Manage , 20 ( 2 ): 1305 - 1318 . https://doi.org/10.1109/TNSM.2022.3229706 https://doi.org/10.1109/TNSM.2022.3229706
Luo H , Zhong SS , 2017 . Gas turbine engine gas path anomaly detection using deep learning with Gaussian distribution . Prognostics and System Health Management Conf , p. 1 - 6 . https://doi.org/10.1109/PHM.2017.8079166 https://doi.org/10.1109/PHM.2017.8079166
Mascaro S , Nicholso AE , Korb KB , 2014 . Anomaly detection in vessel tracks using Bayesian networks . Int J Approx Reason , 55 ( 1 ): 84 - 98 . https://doi.org/10.1016/j.ijar.2013.03.012 https://doi.org/10.1016/j.ijar.2013.03.012
Mathur AP , Tippenhauer NO , 2016 . SWaT: a water treatment testbed for research and training on ICS security . Int Workshop on Cyber-Physical Systems for Smart Water Networks , p. 31 - 36 . https://doi.org/10.1109/CySWater.2016.7469060 https://doi.org/10.1109/CySWater.2016.7469060
Meidan Y , Bohadana M , Mathov Y , et al. , 2018 . N-BaIoT—network-based detection of IoT botnet attacks using deep autoencoders . IEEE Pervasive Comput , 17 ( 3 ): 12 - 22 . https://doi.org/10.1109/MPRV.2018.03367731 https://doi.org/10.1109/MPRV.2018.03367731
Meng WB , Liu Y , Zhu YC , et al. , 2019 . LogAnomaly: unsupervised detection of sequential and quantitative anomalies in unstructured logs . Proc 28 th Int Joint Conf on Artificial Intelligence , p. 4739 - 4745 .
Mirsky Y , Doitshman T , Elovici Y , et al. , 2018 . Kitsune: an ensemble of autoencoders for online network intrusion detection . https://doi.org/10.48550/arXiv.1802.09089 https://doi.org/10.48550/arXiv.1802.09089
Montgomery B , 2024 . Large-scale cellular phone outage hits AT&T customers across US . https://www.theguardian.com/technology/2024/feb/22/phone-outage-us https://www.theguardian.com/technology/2024/feb/22/phone-outage-us [Accessed on Apr. 15, 2025 ] .
Moustafa N , Slay J , 2015 . UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set) . Military Communications and Information Systems Conf , p. 1 - 6 . https://doi.org/10.1109/MilCIS.2015.7348942 https://doi.org/10.1109/MilCIS.2015.7348942
Nawaz A , Khan SS , Ahmad A , 2024 . Ensemble of autoencoders for anomaly detection in biomedical data: a narrative review . IEEE Access , 12 : 17273 - 17289 . https://doi.org/10.1109/ACCESS.2024.3360691 https://doi.org/10.1109/ACCESS.2024.3360691
Neto ECP , Dadkhah S , Ferreira R , et al. , 2023 . CICIoT2023: a real-time dataset and benchmark for large-scale attacks in IoT environment . Sensors , 23 ( 13 ): 5941 . https://doi.org/10.3390/s23135941 https://doi.org/10.3390/s23135941
Ngo MV , Luo T , Chaouchi H , et al. , 2020 . Contextual-bandit anomaly detection for IoT data in distributed hierarchical edge computing . IEEE 40 th Int Conf on Distributed Computing Systems , p. 1227 - 1230 . https://doi.org/10.1109/ICDCS47774.2020.00191 https://doi.org/10.1109/ICDCS47774.2020.00191
Ngo MV , Luo T , Quek TQS , 2021 . Adaptive anomaly detection for Internet of Things in hierarchical edge computing: a contextual-bandit approach . ACM Trans Int Things , 3 ( 1 ): 4 . https://doi.org/10.1145/3480172 https://doi.org/10.1145/3480172
Nguyen TA , He JY , Le LT , et al. , 2023 . Federated PCA on Grassmann manifold for anomaly detection in IoT networks . IEEE Conf on Computer Communications , p. 1 - 10 . https://doi.org/10.1109/infocom53939.2023.10229026 https://doi.org/10.1109/infocom53939.2023.10229026
Oliner A , Stearley J , 2007 . What supercomputers say: a study of five system logs . 37 th Annual IEEE/IFIP Int Conf on Dependable Systems and Networks , p. 575 - 584 . https://doi.org/10.1109/DSN.2007.103 https://doi.org/10.1109/DSN.2007.103
OpenAI , 2024 . GPT-4 technical report . https://doi.org/10.48550/arXiv.2303.08774 https://doi.org/10.48550/arXiv.2303.08774
Ozyurt Y , Feuerriegel S , Zhang C , 2023 . Contrastive learning for unsupervised domain adaptation of time series . https://doi.org/10.48550/arXiv.2206.06243 https://doi.org/10.48550/arXiv.2206.06243
Pajouh HH , Dastghaibyfard G , Hashemi S , 2017 . Two-tier network anomaly detection model: a machine learning approach . J Intell Inform Syst , 48 ( 1 ): 61 - 74 . https://doi.org/10.1007/s10844-015-0388-x https://doi.org/10.1007/s10844-015-0388-x
Parameswarappa P , Shah T , Lanke GR , 2023 . A machine learning-based approach for anomaly detection for secure cloud computing environments . Int Conf on Intelligent Data Communication Technologies and Internet of Things , p. 931 - 940 . https://doi.org/10.1109/IDCIoT56793.2023.10053518 https://doi.org/10.1109/IDCIoT56793.2023.10053518
Peng YH , Tan AP , Wu JJ , et al. , 2019 . Hierarchical edge computing: a novel multi-source multi-dimensional data anomaly detection scheme for Industrial Internet of Things . IEEE Access , 7 : 111257 - 111270 . https://doi.org/10.1109/ACCESS.2019.2930627 https://doi.org/10.1109/ACCESS.2019.2930627
Popoola SI , Ande R , Adebisi B , et al. , 2022 . Federated deep learning for zero-day botnet attack detection in IoT-edge devices . IEEE Int Things J , 9 ( 5 ): 3930 - 3944 . https://doi.org/10.1109/JIOT.2021.3100755 https://doi.org/10.1109/JIOT.2021.3100755
Ratsch G , Mika S , Scholkopf B , et al. , 2002 . Constructing boosting algorithms from SVMs: an application to one-class classification . IEEE Trans Patt Anal Mach Intell , 24 ( 9 ): 1184 - 1199 . https://doi.org/10.1109/TPAMI.2002.1033211 https://doi.org/10.1109/TPAMI.2002.1033211
Ren HS , Xu BX , Wang YJ , et al. , 2019 . Time-series anomaly detection service at Microsoft . Proc 25 th ACM SIGKDD Int Conf on Knowledge Discovery & Data Mining , p. 3009 - 3017 . https://doi.org/10.1145/3292500.3330680 https://doi.org/10.1145/3292500.3330680
Ren KY , Yuan S , Zhang C , et al. , 2023 . CANET: a hierarchical CNN-attention model for network intrusion detection . Comput Commun , 205 : 170 - 181 . https://doi.org/10.1016/j.comcom.2023.04.018 https://doi.org/10.1016/j.comcom.2023.04.018
Ren PZ , Xiao Y , Chang XJ , et al. , 2021 . A survey of deep active learning . ACM Comput Surv , 54 ( 9 ): 180 . https://doi.org/10.1145/3472291 https://doi.org/10.1145/3472291
Reynolds D . 2009 . Gaussian mixture models . In: Li SZ , Jain A (Eds.), Encyclopedia of Biometrics . Springer , Boston, MA . https://doi.org/10.1007/978-0-387-73003-5_196 https://doi.org/10.1007/978-0-387-73003-5_196
Rokach L , Maimon O . 2005 . Clustering methods . In: Maimon O , Rokach L (Eds.), Data Mining and Knowledge Discovery Handbook . Springer , Boston, MA . https://doi.org/10.1007/0-387-25465-X_15 https://doi.org/10.1007/0-387-25465-X_15
Schneible J , Lu A , 2017 . Anomaly detection on the edge . IEEE Military Communications Conf , p. 678 - 682 . https://doi.org/10.1109/MILCOM.2017.8170817 https://doi.org/10.1109/MILCOM.2017.8170817
Segerholm L , 2023 . Unsupervised Online Anomaly Detection in Multivariate Time-Series . https://stsprogrammet.se/wp-content/uploads/2023/02/2312_Ludvig_Segerholm.pdf https://stsprogrammet.se/wp-content/uploads/2023/02/2312_Ludvig_Segerholm.pdf [Accessed on Apr. 1, 2024 ] .
Shan SW , Huo YT , Su YX , et al. , 2024 . Face it yourselves: an LLM-based two-stage strategy to localize configuration errors via logs . Proc 33 rd ACM SIGSOFT Int Symp on Software Testing and Analysis , p. 13 - 25 . https://doi.org/10.1145/3650212.3652106 https://doi.org/10.1145/3650212.3652106
Sharafaldin I , Lashkari AH , Ghorbani AA , 2018 . Toward generating a new intrusion detection dataset and intrusion traffic characterization . Proc 4 th Int Conf on Information Systems Security and Privacy , p. 108 - 116 . https://doi.org/10.5220/0006639801080116 https://doi.org/10.5220/0006639801080116
Sharafaldin I , Lashkari AH , Hakak S , et al. , 2019 . Developing realistic distributed denial of service (DDoS) attack dataset and taxonomy . Int Carnahan Conf on Security Technology , p. 1 - 8 . https://doi.org/10.1109/CCST.2019.8888419 https://doi.org/10.1109/CCST.2019.8888419
Shi WB , Cao J , Zhang Q , et al. , 2016 . Edge computing: vision and challenges . IEEE Int Things J , 3 ( 5 ): 637 - 646 . https://doi.org/10.1109/JIOT.2016.2579198 https://doi.org/10.1109/JIOT.2016.2579198
Shi YJ , Ying XH , Yang JF , 2022 . Deep unsupervised domain adaptation with time series sensor data: a survey . Sensors , 22 ( 15 ): 5507 . https://doi.org/10.3390/s22155507 https://doi.org/10.3390/s22155507
Smith D , Guan Q , Fu S , 2010 . An anomaly detection framework for autonomic management of compute cloud systems . IEEE 34 th Annual Computer Software and Applications Conf Workshops , p. 376 - 381 . https://doi.org/10.1109/COMPSACW.2010.72 https://doi.org/10.1109/COMPSACW.2010.72
Song J , Takakura H , Okabe Y , et al. , 2013 . Toward a more practical unsupervised anomaly detection system . Inform Sci , 231 : 4 - 14 . https://doi.org/10.1016/j.ins.2011.08.011 https://doi.org/10.1016/j.ins.2011.08.011
Song YJ , Xin RY , Chen P , et al. , 2023 . Identifying performance anomalies in fluctuating cloud environments: a robust correlative-GNN-based explainable approach . Future Gener Comput Syst , 145 : 77 - 86 . https://doi.org/10.1016/j.future.2023.03.020 https://doi.org/10.1016/j.future.2023.03.020
Srivastava S , Singh SP , 2016 . A survey on latency reduction approaches for performance optimization in cloud computing . 2 nd Int Conf on Computational Intelligence & Communication Technology , p. 111 - 115 .
Su J , Jiang CF , Jin X , et al. , 2024 . Large language models for forecasting and anomaly detection: a systematic literature review . https://doi.org/10.48550/arXiv.2402.10350 https://doi.org/10.48550/arXiv.2402.10350
Tavallaee M , Bagheri E , Lu W , et al. , 2009 . A detailed analysis of the KDD CUP 99 data set . IEEE Symp on Computational Intelligence for Security and Defense Applications , p. 1 - 6 . https://doi.org/10.1109/CISDA.2009.5356528 https://doi.org/10.1109/CISDA.2009.5356528
Touvron H , Lavril T , Izacard G , et al. , 2023a . LLaMA: open and efficient foundation language models . https://doi.org/10.48550/arXiv.2302.13971 https://doi.org/10.48550/arXiv.2302.13971
Touvron H , Martin L , Stone K , et al. , 2023b . LLaMA 2: open foundation and fine-tuned chat models . https://doi.org/10.48550/arXiv.2307.09288 https://doi.org/10.48550/arXiv.2307.09288
Tuli S , Casale G , Jennings NR , 2022 . TranAD: deep transformer networks for anomaly detection in multivariate time series data . https://doi.org/10.48550/arXiv.2201.07284 https://doi.org/10.48550/arXiv.2201.07284
Tzeng E , Hoffman J , Zhang N , et al. , 2014 . Deep domain confusion: maximizing for domain invariance . https://doi.org/10.48550/arXiv.1412.3474 https://doi.org/10.48550/arXiv.1412.3474
Venkateswara H , Eusebio J , Chakraborty S , et al. , 2017 . Deep hashing network for unsupervised domain adaptation . Proc IEEE Conf on Computer Vision and Pattern Recognition , p. 5385 - 5394 . https://doi.org/10.1109/CVPR.2017.572 https://doi.org/10.1109/CVPR.2017.572
Vu L , Cao VL , Nguyen QU , et al. , 2022 . Learning latent representation for IoT anomaly detection . IEEE Trans Cybern , 52 ( 5 ): 3769 - 3782 . https://doi.org/10.1109/TCYB.2020.3013416 https://doi.org/10.1109/TCYB.2020.3013416
Wang L , Yoon KJ , 2022 . Knowledge distillation and student-teacher learning for visual intelligence: a review and new outlooks . IEEE Trans Patt Anal Mach Intell , 44 ( 6 ): 3048 - 3068 . https://doi.org/10.1109/TPAMI.2021.3055564 https://doi.org/10.1109/TPAMI.2021.3055564
Wang N , Chen YM , Hu Y , et al. , 2022 . FeCo: boosting intrusion detection capability in IoT networks via contrastive learning . IEEE Conf on Computer Communications , p. 1409 - 1418 . https://doi.org/10.1109/INFOCOM48880.2022.9796926 https://doi.org/10.1109/INFOCOM48880.2022.9796926
Wang W , Zhu M , Zeng XW , et al. , 2017 . Malware traffic classification using convolutional neural network for representation learning . Int Conf on Information Networking , p. 712 - 717 . https://doi.org/10.1109/ICOIN.2017.7899588 https://doi.org/10.1109/ICOIN.2017.7899588
Wang YX , Yan J , Ye XY , et al. , 2022 . Few-shot transfer learning with attention mechanism for high-voltage circuit breaker fault diagnosis . IEEE Trans Ind Appl , 58 ( 3 ): 3353 - 3360 . https://doi.org/10.1109/TIA.2022.3159617 https://doi.org/10.1109/TIA.2022.3159617
Webb BK , Purohit S , Meyur R , 2024 . Cyber knowledge completion using large language models . https://doi.org/10.48550/arXiv.2409.16176 https://doi.org/10.48550/arXiv.2409.16176
Wu TT , Luo LH , Li YF , et al. , 2024 . Continual learning for large language models: a survey . https://doi.org/10.48550/arXiv.2402.01364 https://doi.org/10.48550/arXiv.2402.01364
Xia X , Pan XZ , Li N , et al. , 2022 . GAN-based anomaly detection: a review . Neurocomputing , 493 : 497 - 535 . https://doi.org/10.1016/j.neucom.2021.12.093 https://doi.org/10.1016/j.neucom.2021.12.093
Xu HW , Chen WX , Zhao NW , et al. , 2018 . Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in web applications . Proc World Wide Web Conf , p. 187 - 196 . https://doi.org/10.1145/3178876.3185996 https://doi.org/10.1145/3178876.3185996
Xu W , Huang L , Fox A , et al. , 2009 . Detecting large-scale system problems by mining console logs . Proc ACM SIGOPS 22nd Symp on Operating Systems Principles , p. 117 - 132 . https://doi.org/10.1145/1629575.1629587 https://doi.org/10.1145/1629575.1629587
Xue H , Salim FD , 2024 . PromptCast: a new prompt-based learning paradigm for time series forecasting . IEEE Trans Knowl Data Eng , 36 ( 11 ): 6851 - 6864 . https://doi.org/10.1109/TKDE.2023.3342137 https://doi.org/10.1109/TKDE.2023.3342137
Yang L , Chen JJ , Wang Z , et al. , 2021 . Semi-supervised log-based anomaly detection via probabilistic label estimation . IEEE/ACM 43rd Int Conf on Software Engineering , p. 1448 - 1460 . https://doi.org/10.1109/ICSE43902.2021.00130 https://doi.org/10.1109/ICSE43902.2021.00130
Yang YC , Lee K , Dariush B , et al. , 2024 . Follow the rules: reasoning for video anomaly detection with large language models . https://doi.org/10.48550/arXiv.2407.10299 https://doi.org/10.48550/arXiv.2407.10299
Yu XY , Li T , Hu AQ , 2020 . Time-series network anomaly detection based on behaviour characteristics . IEEE 6 th Int Conf on Computer and Communications , p. 568 - 572 . https://doi.org/10.1109/ICCC51575.2020.9345249 https://doi.org/10.1109/ICCC51575.2020.9345249
Zanella L , Menapace W , Mancini M , et al. , 2024 . Harnessing large language models for training-free video anomaly detection . Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition , p. 18527 - 18536 . https://doi.org/10.1109/CVPR52733.2024.01753 https://doi.org/10.1109/CVPR52733.2024.01753
Zeng AH , Liu X , Du ZX , et al. , 2023 . GLM-130B: an open bilingual pre-trained model . https://doi.org/10.48550/arXiv.2210.02414 https://doi.org/10.48550/arXiv.2210.02414
Zhang JQ , Wang ZZ , Meng JJ , et al. , 2019 . Boosting positive and unlabeled learning for anomaly detection with multi-features . IEEE Trans Multimedia , 21 ( 5 ): 1332 - 1344 . https://doi.org/10.1109/TMM.2018.2871421 https://doi.org/10.1109/TMM.2018.2871421
Zhang P , Niu K , Tian H , et al. , 2019 . Technology prospect of 6G mobile communications . J Commun , 40 ( 1 ): 141 - 148 (in Chinese) .
Zhang SL , Zhao CY , Sui YC , et al. , 2021 . Robust KPI anomaly detection for large-scale software services with partial labels . IEEE 32 nd Int Symp on Software Reliability Engineering , p. 103 - 114 . https://doi.org/10.1109/ISSRE52982.2021.00023 https://doi.org/10.1109/ISSRE52982.2021.00023
Zhang X , Lin QW , Xu Y , et al. , 2019a . Cross-dataset time series anomaly detection for cloud systems . Proc USENIX Annual Technical Conf , p. 1063 - 1076 .
Zhang X , Xu Y , Lin QW , et al. , 2019b . Robust log-based anomaly detection on unstable log data . Proc 27 th ACM Joint Meeting on European Software Engineering Conf and Symp on the Foundations of Software Engineering , p. 807 - 817 . https://doi.org/10.1145/3338906.3338931 https://doi.org/10.1145/3338906.3338931
Zhong ZY , Fan QL , Zhang JC , et al. , 2023 . A survey of time series anomaly detection methods in the AIOps domain . https://doi.org/10.48550/arXiv.2308.00393 https://doi.org/10.48550/arXiv.2308.00393
Zhu B , Li J , Gu RB , et al. , 2020 . An approach to cloud platform log anomaly detection based on natural language processing and LSTM . Proc 3 rd Int Conf on Algorithms, Computing and Artificial Intelligence , Article 88 . https://doi.org/10.1145/3446132.3446415 https://doi.org/10.1145/3446132.3446415
Zhuang FZ , Qi ZY , Duan KY , et al. , 2021 . A comprehensive survey on transfer learning . Proc IEEE , 109 ( 1 ): 43 - 76 . https://doi.org/10.1109/JPROC.2020.3004555 https://doi.org/10.1109/JPROC.2020.3004555
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621