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Abstract:    Network fault management is crucial for a wireless sensor network (WSN) to maintain a normal running state because 
faults (e.g., link failures) often occur. The existing lossy link localization (LLL) approach usually infers the most probable failed 
link set first, and then gives the fault hypothesis set. However, the inferred failed link set contains many possible failures that do 
not actually occur. That quantity of redundant information in the inferred set can pose a high computational burden on fault hy-
pothesis inference, and consequently decreases the evaluation accuracy and increases the failure localization time. To address the 
issue, we propose the conditional information entropy based redundancy elimination (CIERE), a redundant lossy link elimination 
approach, which can eliminate most redundant information while reserving the important information. Specifically, we develop a 
probabilistically correlated failure model that can accurately reflect the correlation between link failures and model the nonde-
terministic fault propagation. Through several rounds of mathematical derivations, the LLL problem is transformed to a 
set-covering problem. A heuristic algorithm is proposed to deduce the failure hypothesis set. We compare the performance of the 
proposed approach with those of existing LLL methods in simulation and on a real WSN, and validate the efficiency and effec-
tiveness of the proposed approach. 
 
Key words:  Lossy link localization; Redundancy eliminating algorithm; Set-covering; Wireless sensor networks (WSNs); 

Network diagnosis 
http://dx.doi.org/10.1631/FITEE.1601247 CLC number:  TP393 
 
 
1  Introduction 
 

Wireless sensor networks (WSNs) have a wide 
range of applications in many fields such as envi-
ronmental monitoring (Manolov et al., 2004), health 
assistance (Harris et al., 2016), inventory manage-
ment (Chipara et al., 2010), home security (Li, 2007), 
and battlefield situational awareness (Li et al., 2010). 
Extensive experience reveals that an outage usually 
occurs in the sensor network as a result of error- 
prone nodes and lossy links caused by internal losses 
or environmental interference (Chipara et al., 2010). 

Compared to wired networks, WSNs do not have 
efficient monitoring tools since they have a limited 
bandwidth and suffer from high packet loss rates. 
Many potential faults that do not actually occur oc-
cupy a fairly large proportion of the inferred fault 
hypothesis set, which may lead to false judgments. 
Therefore, there has recently been a surge of interest 
in the design of low-cost and highly accurate WSN 
failure monitoring tools that can ensure timely detec-
tion and fault locations for administrators. 

The alarms acquired by a sensor network mon-
itoring module are considered as the external symp-
toms, and alarms are indicated by faults. According to 
the symptom set, we can infer the most probable lossy 
link set and locate the root fault. Due to the bandwidth 
and energy constraints, an end-to-end measurement is 
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used to infer the lossy links in a sensor network. A 
lossy link localization (LLL) is formulated as a 
Bayesian inference problem, and a max-product al-
gorithm was proposed to solve it (Zhao and Cai, 
2010). Approaching the problem as a huge commu-
nication overhead of the sink-based tools, Liu et al. 
(2014) proposed a self-diagnostic approach, which 
encourages each single sensor to join the fault deci-
sion process. To deal with the challenges of band-
width shortages and the frequently changing routing 
topologies for monitoring sensor networks, an 
end-to-end application traffic was used for inferring 
the performance of the internal network links (Ngu-
yen and Thiran, 2006). Based on this technique, a 
lossy link diagnostic approach to infer lossy links was 
proposed using the existing traffic information from 
the sensor nodes, which reduced the overhead (Zhang 
et al., 2014). In addition, to address the issue that 
information collection is independent of root-cause 
deduction, Gong et al. (2015) proposed a directional 
diagnosis approach where the acquisition of diagnos-
tic information is guided by the fault inference pro-
cess. However, the methods reported above share the 
following drawbacks. They use the gathered diag-
nostic information to infer the fault hypothesis set and 
locate the lossy links. However, there is too much 
redundant information, which increases the fault lo-
calization time and reduces the localization accuracy. 
Moreover, the methods consider the lossy links as 
independent events and ignore the nondeterministic 
fault propagation phenomenon. Therefore, designing 
an efficient and highly accurate LLL method is still 
challenging and open to new approaches. 

This paper provides a lightweight solution to 
locate the lossy links by eliminating most of the re-
dundant information in the raw fault set. We divide 
the LLL process into three modules, i.e., a lossy link 
prediction module, a redundancy elimination module, 
and an LLL module. We first construct a probabilistic 
correlation based lossy link model to express the 
relationship among the failures. Then, we model a 
probabilistic weighted bipartite graph (PWBG), 
which can represent the nondeterministic causal rela-
tionships between lossy links and symptoms. In the 
redundancy elimination module, conditional infor-
mation entropy is adopted to calculate the degree of 
importance of a raw fault. On this basis, we attempt to 
remove faults that are unrelated or unimportant, and 

acquire a possible lossy link set. In the LLL module, 
the LLL problem is formulated and it can be consid-
ered as a set-covering problem. It is solved by means 
of a heuristic algorithm that can be executed correctly 
and efficiently. 

This paper presents the following major contri-
butions:  

1. We observe that one failure may be correlated 
with another due to the dependence of logic or the 
function of links. Furthermore, we develop a proba-
bilistically correlated failure model, which gives the 
quantified impact that one failed link has on another 
one. 

2. We construct a PWBG, which can effectively 
represent the nondeterministic causal relationships 
between lossy links and symptoms. With PWBG, we 
can find the most probable lossy link set that involves 
all the possible lossy links related to the symptoms.  

3. We propose a conditional information  
entropy based algorithm for redundancy elimination. 
With it, the lossy links that are less likely to occur are 
removed and a possible lossy link set that involves 
fewer redundant faults is obtained to realize lossy link 
filtering.  

4. We formulate the LLL problem, and prove that 
it can be considered as a set-covering problem. Addi-
tionally, we propose a heuristic algorithm to solve it 
efficiently. 

 
 

2  Related works 
 

There are three kinds of studies that exist related 
to our work. 

2.1  Failure propagation modeling 

Many works address the failure propagation 
modeling problems to research how the local com-
ponent triggers cascading failures in complex systems 
or networks, for instance, a propagation model for 
bank failures (Dias et al., 2015), a cable routing 
model constructed in the early system design stage to 
prevent cable failure propagation events (Bossuyt 
et al., 2016), a new network measure called ‘epidemic 
survivability’ to characterize a network under  
epidemic-like failure propagation scenarios (Man-
zano et al., 2013), and an approach for modeling and 
quantifying the survivability of telecommunication 
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network systems under fault propagation (Xie et al., 
2013). However, these investigations concentrated on 
analyzing the failure propagation mechanism and 
attempted to find some methods to control large-scale 
cascading failures. For integrated fault diagnosis, 
some works introduced timed failure propagation 
graphs (TFPGs), which are causal models that de-
scribe system behavior in the presence of faults and 
how observable symptoms map to hidden faults, e.g., 
an automatic generation approach of TFPGs for fault 
diagnosis (Priesterjahn et al., 2013), a distributed 
diagnosis approach using TFPG models for complex 
systems (Mahadevan et al., 2010), an approach for 
diagnosing alarm sequences at the system level using 
TFPG models (Strasser and Sheppard, 2011), and an 
extended TFPG for fault detection and resolution 
(Troiano et al., 2015). However, the TFPG models are 
used mainly for time constrained fault diagnostics and 
usually determine the mapping. However, in many 
cases, the mapping relations between symptoms and 
faults are nondeterministic. In addition, a variety of 
fault propagation models are available for mapping 
faults to symptoms. For example, Petri nets (Ben-
veniste et al., 2003), finite state machines (Ntalam-
piras, 2014), dependency graphs (Urbanics et al., 
2014), causal graphs (Nyberg, 2013), and Bayesian 
nets (Zhang et al., 2010) can all be used to construct 
fault propagation models. Among them, because the 
relationships between faults and symptoms can be 
represented using a perceivable form, a dependency 
graph based representation is easier to understand. 
Causal graph based and Bayesian net based models 
can present a more precise mapping relationship, as 
they provide an effective representation of causality, 
which is a concept at the core of fault propagation. 
However, they have a high computational complexity. 
Bipartite graphs (Niu et al., 2009) can be considered 
as a simplification of causal graphs and Bayesian net 
based models. However, the deterministic bipartite 
graph cannot show the nondeterministic fault propa-
gation phenomenon. In contrast to these methods, our 
proposed failure propagation model is a nondeter-
ministic probabilistic fault-symptom mapping model. 

2.2  Redundant failure elimination 

Most of previous investigations focused on re-
dundancy elimination for network traffic or data to 
achieve an improvement in link load and network 

efficiency. Examples include an algorithm for re-
dundancy elimination in network traffic (Xu et al., 
2012), a protocol-independent elimination method for 
data redundancy (Zhang et al., 2014), network re-
dundancy elimination by dynamic buffer allocation 
(Yang et al., 2014), a network traffic awareness ar-
chitecture for universal redundancy elimination (Wu 
et al., 2011), a peer-to-peer (P2P) packet cache router 
scheme (Yamamoto and Nakao, 2012), and a redun-
dancy-maximizing identification scheme (Zhang et 
al., 2016) for network-wide traffic redundancy elim-
ination. Compared with wired networks, wireless 
networks (e.g., opportunistic communications and 
WSNs) have lower bandwidth due to hardware limi-
tations. Moreover, to ensure a reliable data transmis-
sion, wireless networks may generate a considerable 
redundant traffic load. Therefore, redundancy elimi-
nation models are constructed to achieve bandwidth 
savings for these networks, e.g., a bloom-filter-aided 
redundancy elimination model for opportunistic 
communication (Park et al., 2016), a support vector 
machine (SVM) based redundancy elimination model 
for WSNs (Patil and Kulkarni, 2013), a lightweight 
traffic redundancy elimination model for software- 
defined wireless mesh networks (Kim et al., 2014), 
and an inter-application redundancy elimination 
model with compiler-assisted scheduling for WSNs 
(Gupta et al., 2012). The data aggregation and a false 
data elimination can cause a computational overhead, 
and will further cause the battery to drain quickly. To 
address these problems and ensure data integrity for 
WSN, an aggregator node selection method and a 
false data redundancy elimination model were pro-
posed (Sandhya et al., 2015). However, this approach 
aims to eliminate redundant data/traffic and multiple 
duplicates, whereas our objective is to eliminate the 
hidden redundant lossy links. Moreover, our redun-
dant failure elimination requires mapping the failures 
to the symptoms. 

Few works have addressed the redundant failure 
elimination problem in fault diagnosis. In most cases, 
the information collection process is independent of 
root-cause deduction, which results in redundant 
information. Redundant faults can pose a high com-
munication burden on WSNs (Gong et al., 2015). 
However, those investigations do not provide a solu-
tion for the redundant faults. In Wang et al. (2013), a 
considerable amount of redundant information was 
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involved in the raw fault set and can be compressed. 
The authors adopted compressive sensing to eliminate 
the redundant faults. However, they did not consider 
the correlation between the faults and the symptoms 
in the redundancy elimination process. 

2.3  Failure localization 

Localization is an important issue in the appli-
cation of WSNs. More accurate localization is needed 
in these networks. A low-cost localization approach 
was proposed to address this issue (Assaf et al., 2015). 
It complies with the heterogeneous nature of WSNs to 
further improve the localization accuracy without 
causing any additional cost. WSNs and multiple fuzzy 
logic controllers were combined to be applied in dy-
namic traffic light management, which does not re-
quire powerful hardware and can be easily imple-
mented (Collotta et al., 2015). Regarding the issue of 
indoor localization, a time of arrival (ToA) approach 
was used to determine the localization, using the time 
delta to estimate the distance between two WSN 
nodes, and the results showed that the localization 
accuracy could be effectively improved (Haute et al., 
2016). A scheme for congestion avoidance, detection, 
and alleviation (CADA) in WSNs was proposed to 
decrease excessive battery consumption caused by the 
congestion of WSNs (Fang et al., 2010). However, all 
these methods concentrate on the localization of 
nodes in WSNs and try to obtain higher localization 
accuracy. We focus mainly on the LLL problem, and 
our objective is to find the failed link rather than the 
specific location of nodes. 

The LLL in WSNs is usually achieved by mon-
itoring the traffic load of the link or the topology of 
the network, and can be categorized into active mon-
itoring tools (Rajasegarar et al., 2008; Tang et al., 
2008; He et al., 2011; Miao et al., 2011; Benhamida et 
al., 2014) and passive monitoring tools (Yang et al., 
2010; Wang et al., 2011; Haddad et al., 2013; Ali et 
al., 2014; Ma and Zhang, 2014). With active moni-
toring methods, end systems send probing packets to 
each other to measure the delay, loss rate, and path 
jitter. A network administrator detects and locates the 
lossy link according to the measured results of the 
routing path performance. However, because the 
sensor networks have low bandwidth characters and 
lose packets easily, they support much less probing 
traffic, especially when the link is congested.  

Compared with active tools, the passive monitoring 
approaches are free of injecting additional probing 
traffic into the network. They can reflect network 
performance for the end user’s experience more ac-
curately. An exact reasoning algorithm which always 
outputs an optimal solution was proposed. It is the 
optimal algorithm for computing the problem of 
mapping faults to symptoms. However, the computa-
tional complexity of the exact reasoning algorithm is 
exponential (Shen, 2012). Couillet and Hachem (2011) 
gave a formal description of local failure localization 
in WSNs. However, they aimed at the local node 
failure rather than the link failure in the whole net-
work. An iterative belief-updating algorithm which 
was an approximate reasoning algorithm was pro-
posed. It can reduce computational complexity and 
obtain a nearly optimal solution for computing the 
fault localization problem (Tang et al., 2009). How-
ever, all these methods adopted the raw fault set, 
which involves considerable redundant information to 
locate the lossy links. Moreover, most existing LLL 
works have been based on a noisy-OR hypothesis 
(Zhang et al., 2010), which takes the lossy links as 
independent events and assumes that multiple lossy 
links do not usually happen simultaneously. In con-
trast to these methods, our proposed method focuses 
on the localization of links and does not make as-
sumptions about the independence of the links.  
In addition, before LLL, we first eliminate most  
redundant failures, which effectively decrease the  
complexity. 

 
 

3  Preliminaries 
 

In this section, we first build the sensor network 
model, and then construct an LLL infrastructure and 
define our problems. Finally, the notations that are 
frequently used are given. 

3.1  Network model 

We model the sensor network as static with a 
single sink, and analyze the sensor network in a time 
window W of length T. Supposing that the sensor 
network routes data to the sink with a tree topology 
(Fig. 1), which can be constructed according to 
methods similar to that proposed by Woo et al. (2003), 
empirical research shows that the routing tree  
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topology changes frequently. Therefore, we define a 
series of small time slots with equal length, and as-
sume that the routing tree topology remains un-
changed in each time slot. 

 
 
 
 
 
 
 
 
 
 
 

3.2  Lossy link localization infrastructure 

Our localization approach can be divided into 
three successive modules (Fig. 2). We first infer the 
most probable lossy link set according to the symp-
tom set. Then, we use a redundancy elimination al-
gorithm to filter the most probable lossy link set to 
acquire the possible lossy link set. Finally, we locate 
the root lossy links according to the LLL algorithm. 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

With the lossy link prediction module, a network 
administrator acquires network alarms and regards 
them as symptoms which are brought about by the 
lossy links. In this module, the lossy link propagation  
phenomenon is modeled. Moreover, the most proba-
ble lossy link set is deduced according to the  
symptoms. 

With the redundancy elimination module, most 

of the lossy links that actually do not occur are elim-
inated. We call the lossy links that do not actually 
occur the ‘redundant lossy links’. Redundant lossy 
links increase the computational time and complexity, 
and reduce the LLL accuracy. In this module, we can 
acquire the possible lossy link set that involves minor 
redundant lossy links. Reserving the real lossy links 
and eliminating the redundant lossy links are the key 
problems in the redundancy elimination algorithm. 

With the LLL module, we can deduce the root 
lossy link according to the LLL algorithm. In this 
module, what we should do is to find the lossy link 
hypothesis set that can best explain the symptoms 
observed. 

Next, we illustrate the main content and define 
our problems: 

Step 1: modeling lossy link propagation. When a 
sensor network link fails, owing to the dependency 
relationships of structure and function between the 
links, this may lead to lossy links in the correlative 
links. Then, a lossy link propagation phenomenon 
will occur, and each lossy link may produce many 
alarms (symptoms). In this work, we adopt a PWBG 
to model the lossy link propagation phenomenon, 
which can effectively reduce the computational 
complexity. With the PWBG model, we can gain the 
most probable lossy link set. 
Problem 1 (Lossy link propagation)    Given a WSN 
G, a set of symptoms S, and a set of lossy links F, the 
objective is to construct a propagation model, so that 
all symptoms can be mapped to the most probable 
lossy link set. 

Step 2: eliminating redundant lossy links. The 
objective of redundancy elimination is to eliminate as 
many redundant lossy links as possible in the most 
probable lossy link set. The lossy links in the most 
probable lossy link set usually include lossy links that 
do not actually occur, and these links occupy a quite 
large percentage. With redundancy elimination, we 
can acquire the possible lossy link set with a low 
redundancy rate. In this work, we adopt a conditional 
information entropy based method to eliminate the 
redundant lossy links. 
Problem 2 (Redundancy elimination)    Given the 
most probable lossy link set, the objective is to ac-
quire the possible lossy link set, in which the lossy 
links that do not occur are eliminated as much as 
possible, so that LLL can be more exact. 

Fig. 1  Routing topologies (a) and (b) for a sensor network 
in a given period of time 

Fig. 2  Lossy link localization infrastructure 
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Step 3: Locating the lossy links. Once we have 
achieved the possible lossy link set, the objective in 
the next stage is to obtain the lossy link hypothesis set. 
We can achieve the target according to an LLL algo-
rithm. We formalize the LLL problem. Because the 
problem is NP-hard (Gong et al., 2015), we present a 
greedy heuristic algorithm to solve it.  
Problem 3 (Lossy link localization)    Given the 
possible lossy link set, the objective is to acquire the 
lossy link hypothesis set, so that we can acquire the 
root lossy links and locate the lossy links. 

Table 1 lists the frequently used notations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4  Lossy link model and prediction model 
 

In this section, we first model the lossy link 
based on probabilistic correlation. Then, we present 
schemes to solve the lossy link propagation-modeling 
problem and acquire the most probable lossy link set 
according to the symptoms. 

4.1 Probabilistic correlation-based lossy link 
model 

To the best of our knowledge, most existing LLL 
works are based on a noisy-OR hypothesis (Zhang  
et al., 2010), taking lossy links as independent events 

and assuming that multiple lossy links usually do not 
occur simultaneously. However, because sensor 
networks change their routing topologies quite fre-
quently, lossy links are not really independent of each 
other. For example, a sensor network has two routing 
topologies during a given period of time as shown in 
Figs. 1a and 1b, respectively. In Fig. 1a, when sensor 
node s1 fails, sensor nodes s3, s4, and s5 cannot route 
data to the sink sensor node, and nodes s3, s4, and s5 
are correlated with each other. A shared risk link 
group (SRLG) can be used to represent the group of 
links sharing the same risk. When one fails, the other 
nodes in the same group fail simultaneously. However, 
as shown in Fig. 1b, when sensor node s1 fails, nodes 
s3, s4, and s6 disconnect from the sink sensor node, 
while node s5 still works well. Nodes s3, s4, and s5 are 
not absolutely correlated; i.e., there exists a correla-
tion between lossy links with a probability. In con-
sidering this problem, we define a probabilistically 
shared risk link group (PSRLG) model, which can 
express relations between lossy links with a proba-
bilistic correlation. 
Definition 1 (Probabilistically shared risk link group)     
Let R be the set of SRLG. When event r∈R occurs, the 
links that fail with a nonzero probability construct a 
PSRLG about event R, as 

 

{ }PSRLG : ( ) 0 ,i r ir l L p l= ∈ ≠                   (1) 
 

where L is the set of links, and pr(li) is the probability 
that li breaks down when SRLG event r occurs. 

Let pr be the probability that event r occurs. 
When there is lossy link correlation between links li 
and lj, the probabilities that they break down are p(fi) 
and p(fj), respectively: 

 
( ) ( ),i r r ip f p p l= ⋅                           (2) 

( ) ( ).j r r jp f p p l= ⋅                          (3) 
 

According to Eqs. (2) and (3), we can derive that 
only when pr≠0, are p(fi) and p(fj) nonzero. Namely, 
the failure probabilities of links li and lj are deter-
mined by event r. Next, we will solve the LLL prob-
lem with the PSRLG model. 

4.2  Lossy link propagation model 

In a sensor network, when a failure (such as a 
lossy link) occurs, some symptoms that reflect the 

Table 1  Notations 
Notation Definition 

F Set of possible lossy links 
PF Set of prior probabilities of F 
S Set of possible symptoms 

E(F×S) Set of directed edges where F causes S 
PF×S Correlation matrix 
pij Probability that fi causes sj 

rPSRLG Probabilistically shared risk link group about 
event r 

p(fi) Failure probability of link li  
RR Redundancy rate 
Fmax Set of most probable lossy links  
FS Set of possible lossy links 

KES Knowledge expression system that involves 
lossy links and symptoms 

U, A Universe, set of lossy links and symptoms 
V, f Attribute set, information function 
η(FS) Real lossy link coverage rate 
R(FS) Lossy link redundancy rate 

SO Set of observed symptoms 
OR Observability ratio 

LR(s) Loss rate 
SSR(s) False positive rate of symptoms 
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degradation in network performance occur. The 
symptom is a reflection of inherent failures. However, 
failures are covered by massive symptoms, which 
make the failures invisible. Because there exist de-
pendency relations of structure and function between 
network elements, when one network element fails, it 
may cause failure of the related elements, which 
means that a lossy link can spread in the network and 
a lossy link propagation phenomenon may occur. 
Therefore, to locate the lossy links accurately and 
quickly, we must take into account the lossy link 
propagation phenomenon in the sensor network LLL. 

In general, the lossy link propagation model 
(LLPM) can be realized by modeling the lossy link 
state of a network element, the relation between 
symptoms, and the relation between the lossy link and 
the symptom. Causal graph and Bayesian net based 
models are traditional LLPMs, which can present an 
effective representation of causality. However, they 
have a high computational complexity, which makes 
them impractical in the LLL problem. A bipartite 
lossy link propagation model (BLLPM) can be con-
sidered as a simplification of the causal graph and 
Bayesian net based models. Because BLLPM pre-
serves the modeling ability and greatly reduces 
computational complexity, it is widely used in the 
LLL problem. 

BLLPM can model the causality between the 
lossy links and the symptoms by adopting a bipartite 
graph. Lossy link vertexes and symptom vertexes 
constitute two kinds of disjoint vertex sets of BLLPM. 
The causality between vertexes is denoted by a di-
rected weighted edge. If the edge weight is 0 or 1, 
BLLPM is the deterministic model. For a determin-
istic BLLPM, when one lossy link occurs, all the 
symptoms related with it occur. However, due to the 
imprecise threshold and the failed alarm, an event 
where lossy links cause symptoms is a probability 
event. Therefore, we should construct a reasonable 
LLPM to reveal the nondeterministic causal rela-
tionships. We adopt a nondeterministic BLLPM, 
namely, a PWBG, which is a probabilistic LLPM. 

A PWBG can be characterized by a five-element 
vector: PWBG=(F, PF, S, E(F×S), PF×S). The details 
are as follows: 

F={f1, f2, …, fm} is the set of possible lossy links; 
PF={p(f1), p(f2), …, p(fm)} is the set of the prior 

probabilities of F; 

S={S1, S2, …, Sn} is the set of possible  
symptoms; 

E(F×S) is the set of directed edges where F 
causes S; 

PF×S=(pij)m×n is the correlation matrix, where 
pij=p(sj|fi)∈[0, 1] is the probability that fi causes sj. 

Fig. 3 shows an example of a PWBG that con-
sists of three lossy links and four symptoms, where 
F={f1, f2, f3} is the lossy link set, S={s1, s2, s3, s4} is 
the symptom set, and PF={0.004, 0.006, 0.005}. We 
can then acquire the conditional probability matrix 

0.5 0.2 0.8 0.0
0.0 0.7 0.5 0.7
0.4 0.0 0.0 0.5

F S×

 
 =  
 



P . 

 
 
 

 
 

 
 

 
With a PWBG, we can find all the possible lossy 

links related to the symptoms, and acquire the most 
probable lossy link set. The lossy links in the set are 
always more than real lossy links. It means that most 
lossy links in the set do not occur and are acturally 
redundancies. Therefore, we should screen all the 
candidate lossy links in the set, and filter the lossy 
links that are less likely to occur to acquire the pos-
sible lossy link set that involves fewer elements. We 
remove as many redundant lossy links as possible, 
which can help us realize a more accurate LLL. 

We define the redundancy rate (RR) to represent 
the proportion of redundant lossy links in the most 
probable lossy link set, formulated as follows: 

 

R

max max
RR 1 ,

F F
F F

= = −                      (4) 

 
where Fmax is the most probable lossy link set, FR is 
the set constituted by redundant lossy links, and F is 
the possible lossy link set. 

Redundant lossy links greatly affect the preci-
sion of LLL. Next, we will provide an efficient 
method to eliminate the redundant lossy links. 

Fig. 3  A probabilistic weighted bipartite graph 
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5  Redundancy elimination 
 
The objective of the redundancy elimination 

module is to eliminate as many lossy links that do not 
actually occur as possible, and to acquire the possible 
lossy link set with a lower redundancy rate. In this 
section, we propose an approach to achieve this  
target. 

It is known that attributes describing the 
knowledge are not equally important in the 
knowledge base, and some of them are redundant. 
Redundant attributes increase the complexity of de-
cision analysis, and even result in wrong decision 
making. Knowledge reduction involves removing the 
uncorrelated or unimportant attributes while main-
taining the classification ability. As mentioned above, 
there are many redundant lossy links in the most 
probable lossy link set. Redundancy elimination for 
the set is to remove as many redundant lossy links as 
possible and reserve the actual lossy links. Therefore, 
the redundancy elimination problem can be trans-
formed into a knowledge reduction problem. We de-
fine a knowledge expression system that involves 
lossy links and symptoms for redundancy elimination, 
which is denoted by a four-element vector as follows: 

 
KES=(U, A, V, f),                    (5) 

 
where U is the universe, A is the non-empty finite set, 

aa A
V V

∈
= ∪  is the attribute set, and f is the information 

function which satisfies f: U×A→V, where A is di-
vided into a condition attribute set C and a decision 
attribute set D, and A=C∪D, C consists of lossy links, 
and D consists of symptoms.  

To better measure the degree of importance that 
the lossy links have on the symptoms, and filter the 
lossy links that are less likely to occur, we introduce 
the information entropy. Next, we calculate the failure 
probability with the information entropy. 

Let P be a subset of C. We denote the binary 
relation of P by IND(P), which can be formulated as 
follows: 

 
{ }IND( ) , ( , ) ( , ) .( , )P a P f x a f y ax y= ∀ ∈ =   (6) 

 
The divisions of universe U by binary relations 

IND(P) and IND(D) are U|IND(P)={X1, X2, …, Xt} 

and U|IND(D)={Y1, Y2, …, Ys}, respectively. The 
probability distributions of subsets P and D in U can 
be formulated as follows: 

 

[ ] 1 2

1 2
,:

( ) ( ) ( )
t

t

XX X
X p

p X p X p X
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       (8) 

 
Then, the conditional information entropy that D 

is relative to P can be formulated as follows: 
 

2
1 1

( ) ( ) ( | ) log ( | ),
t s

i j i j i
i j

H D | P p X p Y X p Y X
= =

= −∑ ∑   

(9) 
 

where ( | ) j ij i iY Xp Y X X∩= , i=1, 2, …, t, j=1, 

2, …, s. 
Therefore, the measure of degree of importance 

formula for lossy links can be formulated as 
 
SGF( , , ) ( | ) ( | { }),

( ).
a P D H D P H D P a

a C P
= − ∪
∀ ∈ −

  (10) 

 
According to the degree of importance under 

conditional information entropy, we iteratively select 
lossy links that are important to the symptoms. On 
this basis, we remove as many lossy links that are 
unrelated or unimportant as possible, and acquire the 
possible lossy link set that involves fewer redundant 
lossy links to realize lossy link filtering. The proposed 
redundancy elimination algorithm is called ‘condi-
tional information entropy based redundancy elimi-
nation (CIERE)’. 

The details of CIERE are shown in Algorithm 1, 
which works as follows. The divisions of universe U 
and the conditional information entropy H(D|C) are 
calculated first. For each lossy link in set C, the core 
set that involves lossy links contributing to the 
symptoms is found; consequently, the part of the re-
dundant lossy links is removed initially. Then, an 
indicator value Temp to estimate set P is defined. 
Finally, the lossy link that is important to the symp-
toms is selected iteratively. For each lossy link in set 
C, it calculates the degree of importance according to 
Eq. (10) and selects an attribute with the maximum 
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Algorithm 1  Conditional information entropy based 
redundancy elimination 
Input: the most probable lossy link set C, symptom set D 
Output: reduction set P 
1    Initialization: Core←∅, P←∅ 
2    for all a∈C do 
3     Calculate U|IND(C−{a}), U|IND((C−{a})∪D), and 

H(D|C−{a}) 
4     Find all the lossy links that maximize H(D|C) and let 

them be the set Core 
5    end for 
6    P←Core 
7    Calculate U|IND(P), U|IND(P∪D), and H(D|P) 
8    Temp←H(D|P) 
9    for each a∈(C−P) do 
10   Calculate SGF(a, P, D) 
11   Select attribute a′ with the maximum SGF(a, P, D) from 

set (C−P) 
12   Temp←H(D|P∪{a′}) 
13   P←P∪{a′} 
14  end for 

 
degree of importance to construct set P. 
Lemma 1    The conditional information entropy is 
monotonic. 
Proof    Suppose B⊆C and a∈C−B. First, according to  
the definition of partial order relation  , we can de-
rive U|IND(B∪{a})U|IND(B). For Y⊆U, according 
to the approximation relation, the B-upper approxi-
mation of set Y satisfies { }B BaY Y∪ ≤ , and the 

B-lower approximation of set Y satisfies 

{a}B BY Y∪ ≥ . Therefore, the approximation accu-

racy αB(Y) of set Y under the binary relation IND(B) 
satisfies αB∪{a}(Y)≥αB(Y). 

As defined above, we have U|IND(D)={Y1, 
Y2, …, Ys}. Then, according to Choi and Park (2014), 
we can derive the following formula: 

 

2
1 IND( { })

2
1 IND( )

( ) ( ) log ( )

( ) ( ) log ( ).

s

i i
i X U B a

s

i i
i X U B

p X p Y X p Y X

p X p Y X p Y X

= ∈ ∪

= ∈

− ⋅ ⋅

≤ − ⋅ ⋅

∑ ∑

∑ ∑
   (11) 

 
According to the definition of conditional in-

formation entropy, we can derive that H(D|B)≥ 
H(D|B∪{a}). Thus, the assumption is verified. 
Lemma 2    The CIERE algorithm is computationally 
efficient. 

Proof    The CIERE algorithm consists mainly of 
three steps. The calculation of conditional infor-
mation entropy H(D|C) can be finished first in O(|U|) 
(Gong et al., 2015), followed by two rounds of itera-
tive search. There are |C| elements in the first loop 
execution, so the complexity of this step is O(|C|). In 
the second loop execution, there are |C−P| elements, 
and this step has a complexity of O(|C|). Therefore, 
the total computational complexity of CIERE is 
O(|C|2×|U|), which shows that CIERE can be imple-
mented in polynomial time. Thus, the assumption is 
verified. 

The CIERE algorithm has the advantage of low 
computational complexity. With it, we can eliminate 
most of the redundant lossy links and acquire the 
possible lossy link set, which involves fewer false 
lossy links and little redundant information. Thus, the 
goal of lossy link selection can be achieved. 

Let the selected lossy link set P be FS. To eval-
uate the performance of the CIERE algorithm, we 
define two metrics η(FS) and R(FS), where η(FS) is 
the real lossy link coverage rate and R(FS) is the re-
dundancy rate: 

 

S R CS
S( ) ,SF F F

F
F F

η
−

= =                (12) 

RS CS
S

S S
( ) 1 ,

F F
R F

F F
= = −                  (13) 

 
where FRS is the redundant lossy link set in FS, and 
FCS is the real lossy link set in FS. 

A larger value of η(FS) will make FS involve 
more lossy link information. FS includes all the lossy 
link information of Fmax when η(FS)=1. The lower the 
value of R(FS), the fewer the redundant lossy links in 
FS. 

 
 

6  Solving the lossy link localization problem 
 

In this section, we first formulate the LLL 
problem, and then propose a heuristic algorithm to 
solve it. 

6.1  Formulation of the lossy link localization 
problem 

As described above, the LLL problem is about 
how to choose the most probable candidate lossy link 
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H∈F, which is to find 
 

arg max ( | ).
H F

P H S
⊆

                       (14) 
 

From Bayes’ rule, we have 
 

arg max ( | ) arg max ( | ) ( ) / ( ).
H F H F

P H S P S H P H P S
⊆ ⊆

=   

(15) 
 

As P(S) is not related with H, the equivalent maxi-
mization problem can be formalized as 

 
arg max ( | ) arg max ( | ) ( ).

H F H F
P H S P S H P H

⊆ ⊆
=   (16) 

 
For simplicity, we define an indicator row vector h, 
where hi=1 if fi∈H, and hi=0 otherwise. Then we can 
derive the following formulae: 
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1
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Now, the LLL problem can be formalized as follows: 
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(20) 
 
For simplicity, we take the logarithm of Eq. (20) and 
acquire: 
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We eliminate the constant terms and let ci= 

( )
ln

1 ( )
i

i

p f
p f

−
−

. Then we can obtain the following 

problem: 
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Let 
1

(1 ) .i

m
h

i ij
i

y p
=

= −∏  Then, the LLL problem be-

comes the following minimization problem: 
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From above, we can derive that the LLL problem 

is actually the 0–1 optimization problem. Since there 
are multiple variables in Eq. (23), the minimum 
problem cannot be solved directly and requires some 
approximations. We adopt the Lagrangian relaxation 
method to solve it near optimally. 

By relaxing the constraints of Eq. (23) and 
transforming it via Lagrangian relaxation by adopting 
multiplier {lj}, we obtain the Lagrangian function as 
follows (Shakeri et al., 1996): 

 

1
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We denote the first and second expressions in the 

brackets of Eq. (24) by fj(lj, yj) and ci′(lj), respec-
tively. Note that for a fixed l, the minimization of the 
above Lagrangian function that is with respect to h 
and y can be calculated independently. The minimi-
zation of Θ(l, h, y) that is with respect to y is equiv-
alent to the following equation: 

 

0 1
min ( , ) ln(1 ) ln .

i
j j j j j jy

f y y yl l
≤ ≤

= − +        (25) 

 
We can obtain the extreme value at 

* ( ) ( ),
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j
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j
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λ
λλ
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+
 where u(lj) is the unit step 

function. 
The minimization of Θ(l, h, y) that is with  
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respect to h is equivalent to 
 

0 1 1
min ( , ) .( )

i

m

j i i jy i
i
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=

′= ∑              (26) 

 
With the constraints in Eq. (23), the minimiza-

tion problem in Eq. (26) is a traditional set-covering 
problem. Next, we propose a heuristic algorithm to 
solve it. 

6.2  Heuristic algorithm design 

We call the set-covering problem in Section 6.1 
the ‘LLL problem’. As the problem is NP-hard (Gong 
et al., 2015), we propose a heuristic algorithm LLL to 
solve it.  

The LLL algorithm first ranks the lossy links 
according to their contributions, and then finds the 
covering set that covers all the symptoms via adding 
lossy links one by one. The contribution of each lossy 
link fi to the occurrence of si is defined as g(fi, si), 
which is the unconditional probability under obser-
vation SO, and can be formulated as follows: 

 

O

( , ) ( | ) ( | ) ,
i i fi

i i i i i i
s S s S

g f s p f s p f s
∈ ∈

= ∑ ∑      (27) 

 
where the numerator represents the sum of the poste-
rior probabilities with the observation SO, and the 
denominator is the sum of all the posterior probabili-
ties with the symptoms that result from fi. 

In Eq. (27), we adopt posterior probability p(fi|si) 
rather than prior probability p(si|fi) to define the con-
tribution function. It is principally because the esti-
mation accuracy of the prior probability is low. This 
may lead to low discrimination in explaining symp-
toms for the lossy links, and may result in mistakes of 
lossy link reasoning. Therefore, we introduce the 
concept of posterior probability, which is the uncon-
ditional probability, and can effectively overcome the 
shortcomings of prior probability. Posterior probabil-
ity p(fi|si) can be formulated as follows: 
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          (28) 

 
According to the probabilistic correlation based 

lossy link model, Eq. (28) can be formulated as 
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where pr is the probability that event r occurs, and 
pr(li) is the probability that li fails when an SRLG 
event r occurs. 

With g(fi, si), we can rank all the lossy links in 
descending order, and take lossy links according to 
priority to explain the symptoms. 

We take the loss rate of a link to determine 
whether it fails or not. A threshold φth is defined ac-
cording to the performance demand of WSNs. If the 
link loss rate φe(i)≥φth, it is considered as failed, and 
otherwise as good. The threshold φth can be set based 
on the statistical data that can separate good or failed 
links. 

The LLL algorithm details are shown in Algo-
rithm 2, which works as follows. The LLL algorithm 
first calculates the contribution of each lossy link and 
ranks the lossy links in descending order (lines 2–6). 
Then it takes lossy links in FRS to find the covering set 
according to the rank to explain the symptoms until 
all the symptoms are explained or there are no 
available lossy links for explaining symptoms (lines 
7–17). Finally, we can acquire the lossy link hypoth-
esis set F. We note that F is the minimal subset of FS 
that minimizes the number of lossy links and covers 
all the symptoms, which is a solution of the 
set-covering problem in Section 6.1 for the LLL 
problem. 

In real sensor networks, there may be no suffi-
cient management codes, which results in missing 
reports for some symptoms. Therefore, these missing 
reports cannot be observed. Due to packet loss and 
application errors, alarms may be lost. Moreover, 
false alarms may occur when the alarm threshold is 
mistakenly set or due to network congestion. For 
example, as shown in Fig. 4, there is a PWBG, in 
which symptom s5 gains losses, symptom s6 is the 
false positive symptom, and f4 is the corresponding 
false positive lossy link. Therefore, to make the net-
work character more realistic and acquire higher LLL 
accuracy, we define the metrics in Algorithm 2. 
Lemma 3    The LLL algorithm can be executed  
effectively. 
Proof    First, the selected lossy link set FS is the 
reduction set with Algorithm 1, which involves all the 
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Algorithm 2  Lossy link localization algorithm 
Input: the selected lossy link set FS, the observed symptom set 
FO, OR, LR(s), SSR(s), and the symptom set including all the 
explained symptoms Sep 
Output: lossy link hypothesis set 
1  Initialization: F←∅ 
2  for each fi∈FS do 
3    Calculate g(fi, si) 
4    Rank all the lossy links in FS in descending order  

according to g(fi, si) 
5    FRS←FS 
6  end for 
7  Initialization: Sep←∅ 
8  for each fi∈FRS do 
9    Take all fi∈FRS in turn 
10  while |Sep∩SO|/|S|<1 or there are available lossy links in 

FRS for explaining symptoms do 
11   if S(fi)∪Sep−Sep≠∅ then 
12     F←F∪{fi} and Sep←S(fi)∪Sep 
13   else 
14     F←F and Sep←Sep 
15   end if  
16  end while 
17  end for 

 
 
 

 
 
 
 

 
 
important lossy link information. Then, we select the 
lossy links that greatly contribute to the creation of 
symptoms. Moreover, we construct set F by choosing 
the lossy links one by one according to the ranks. The 
first k lossy links that can explain all the symptoms 
are chosen as lossy link hypothesis set F, which can 
ensure the minimal F and best explain the symptoms. 
Lemma 4    The LLL algorithm is computationally 
efficient. 
Proof    The LLL algorithm consists of two rounds of 
loop executions. First, ranking all the lossy links in FS 
can be finished in O(|FS|log2|FS|) based on a quick sort 
algorithm in the first loop execution. Then, the lossy 
link hypothesis set can be obtained with a complexity 
of O(|FRS|log2|FRS|) with another for-loop that nests 
the binary search. Therefore, the complexity of the 
LLL algorithm is O(|FS|·|FRS|log2|FS|log2|FRS|), which 

can be implemented in polynomial time. The LLL 
algorithm is computationally efficient with an ac-
ceptable time complexity. 

 
 

7  Performance evaluation 
 

In this section, we evaluate our proposed method 
through extensive simulations and experiments. First, 
we analyze the performance of our redundancy 
elimination algorithm CIERE. Second, we compare 
our algorithms with several existing LLL algorithms 
in WSNs under the same simulation environment. 
Finally, we test our algorithm and compare it with 
existing algorithms on real data collected from actual 
WSNs. 

7.1  Simulations 

In the simulation, we construct a data- 
acquisition sensor network with the tree routing to-
pology. The details of the network topology are pre-
sented in Section 3.1. We assume that the packet 
losses for a link are with a Bernoulli process, in which 
a packet traversing a link is dropped with a probabil-
ity that is consistent with the loss rate. The transmis-
sion rates are distributed with density function 
f(ξ)=lξl−1, where 0<ξ≤1 and l>1. Similar to Nguyen 
and Thiran (2006), we set l=4, and thus the expected 
link loss rate is 0.8. The independent failure proba-
bilities are uniformly distributed between 0.001 and 
0.01, and can be obtained according to historical sta-
tistics over a certain period of time in practice. The 
conditional probabilities are randomly chosen from 
range (0, 1). In practice, they may be assigned by 
expert knowledge (Tang et al., 2008). We repeat each 
simulation setting 10 times. In each time, 200 packets 
are sent from each sensor node to the sink. We report 
the average detection rate (DR) which is the per-
centage of links that are successfully located, the false 
positive detection rate (FPR) which is the percentage 
of links that function properly but are considered as 
lossy, and the failure localization time which is the 
time consumed acquiring the lossy link hypothesis set 
F. DR and FPR are defined as follows: 

 

CS

CS
DR ,

F
F

F∩
=                        (30) 

Fig. 4  A probabilistic weighted bipartite graph with OR, 
LR(s), and SSR(s) where OR=|SO|/|S|, s∈SO 
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FPR ,

FF

F
=                         (31) 

 
where FCS is the set of actual lossy links. 

To evaluate the confidence levels of our simula-
tion results, we also give their confidence intervals in 
the form of error bars in the comparisons. The de-
tailed computing method is as follows. The popula-
tion distribution of the overall simulation results is a 
normal distribution and the population standard de-
viation is unknown. Additionally, the sample size is 
less than 30. Therefore, the deviation statistics be-
tween results are distributed in a t-distribution, or 
X∼N(μ, σ2), where X is the population sample. For 
samples X1, X2, …, Xn of X, we can obtain 

2
~ ( 1),

/

XT t n
S n

µ−
= −  where X  is the average val-

ue of samples X1, X2, …, Xn, and S2 is the sample 
variance. We can further obtain the confidence in-

terval of μ, which is /2 ( 1)SX t n
n α± − . Based on this, 

we can calculate the confidence intervals. Note that 
we let α=0.05. It means that the confidence level of 
our results is 95%. 

7.1.1  Performance analysis of the redundancy elimi-
nation algorithm CIERE 

In this section, we analyze the redundancy 
elimination performance of our proposed algorithm 
CIERE and compare it with the MCSED algorithm in 
Wang et al. (2013) in terms of the failure redundancy 
rate RR (Eq. (4)) and the real lossy link coverage rate 
η(FS) (Eq. (12)). 

Fig. 5 shows the results when the number of 
nodes varies from 20 to 100. We observe that as the 
network size increases, the lossy link redundancy rate 
for raw data remains almost constant, which means 
that the redundancy rate has a constant proportion in 
WSNs. The redundancy rate for raw data is approx-
imately 89%. The redundancy rate of the MCSED 
algorithm is approximately 38%, and our algorithm 
has a lower redundancy rate of approximately 29%. 
Therefore, there are many redundant lossy links in set 
Fmax. We can effectively eliminate most of the re-
dundant lossy links with our CIERE algorithm. 

Table 2 shows the results of the real lossy link 
coverage rate in the selected set FS with the same  

network size as in Fig. 5. We observe that η(FS) 
maintains 1 at different network sizes, which means 
that the selected set with our CIERE algorithm can 
always reserve real lossy links. The kernel attributes 
are all reserved and the classification ability is un-
changed after redundancy reduction. 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

7.1.2  Comparison with other methods 

In this section, we focus primarily on the com-
parison of our LLL algorithm with several existing 
LLL algorithms—DID (Gong et al., 2015), MPA 
(Zhao and Cai, 2010), TinyD2 (Liu et al., 2014), and 
MCSED (Wang et al., 2013)—in terms of DR, FPR, 
and the LLL time. Note that we compare DR and FPR 
under different network sizes and fractions of lossy 
links, respectively. 

1. LLL scene I (OR=100%, LR=0%, SSR=0%) 
Figs. 6a and 6b show the results with different 

network sizes. Additionally, Table 3 gives the per-
centage of improvements for LLL compared with the 
other four algorithms. We observe that as the network 
size increases, the accuracies of DID, MPA, TinyD2, 
and MCSED decrease, while our LLL algorithm 
maintains a steady accuracy. Similar results can be 
obtained when the number of lossy links increases. 
We also observe that as the network size increases, the 
LLL time of the MPA algorithm increases exponen-
tially, and the localization times for LLL, DID, Ti-
nyD2, and MCSED slightly increase. Our LLL algo-
rithm has the lowest localization time. We attribute 
the reason for the above observations to the fact that 
the raw data (the most probable lossy link set) has 

Table 2  Real lossy link coverage rate in set FS 
Network size 20 30 40 50 60 70 80 90 100 

η(FS) 1 1 1 1 1 1 1 1 1 
 

Fig. 5  Comparison of the failure (lossy link) redundancy 
rates with algorithms MCSED and CIERE 
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massive redundancies, which decrease the localiza-
tion accuracy and increase the computational com-
plexity. However, our redundancy eliminating algo-
rithm can obtain the most probable lossy link set at a 
low redundancy rate. 

2. LLL scene II (OR=50%, LR=0%, SSR=0%) 
When OR is 50%, compared with scene I, the 

accuracies of the five algorithms decrease (Fig. 7). 
There are two reasons for this. First, as OR decreases, 
the five algorithms have fewer available symptoms to 
infer lossy links. The lack of symptoms therefore 
results in lower accuracy. Second, our LLL algorithm 
models the lossy link with a probabilistic correlation 
model, which can reflect more intrinsic correlations 
between the lossy links. We also observe that as the 
number of observed symptoms decreases, the LLL 
time decreases. It is mainly because that there are 
fewer symptoms in the algorithm execution process. 
The performance improvements of LLL compared 
with the other four algorithms are shown in Table 4.  

3. LLL scene III (OR=50%, LR=10%, SSR=1%) 
Based on scene II, we increase LR to 10% and 

SSR to 1% in scene III. From Fig. 8, we observe that 
the accuracies of the five algorithms considerably 
decrease, because the losses and false positive ob-
servations of the symptoms increase the estimation  

 
 
 
 
 
 
 
 
 
 
 

Table 4  Average improvements in LLL in scene II 

Method 

Average improvement 

DR 
(%) 

FPR  
(%) 

DR  
(%) 

FPR  
(%) 

Failure 
localization 

time (s) 
DID 0.4 30.5 6.8 39.3 55.5 
MPA 0.4 34.0 5.3 45.7 67.3 

TinyD2 5.3 23.8 14.2 33.4 33.7 
MCSED 4.4 13.3 2.9 20.4 9.5 
The fraction of lossy links in Figs. 7a, 7b, and 7e is 0.15; the 
number of nodes in Figs. 7c and 7d is 60. DR: detection rate; FPR: 
false positive rate 

Fig. 6  Comparisons of detection rate, false positive rate, 
and localization time in scene I 
The fraction of lossy links in (a), (b), and (e) is 0.15; the 
number of nodes in (c) and (d) is 60 
 

Table 3  Average improvements in LLL in scene I 

Method 

Average improvement 

DR 
(%) 

FPR 
(%) 

DR 
(%) 

FPR 
(%) 

Failure 
localization 

time (s) 
DID 5.9 51.8 5.9 59.1 67.9 
MPA 7.9 59.4 7.9 62.5 74.2 

TinyD2 12.3 41.8 12.3 55.5 33.8 
MCSED 6.8 39.5 6.8 42.7 4.3 
The fraction of lossy links in Figs. 6a, 6b, and 6e is 0.15; the 
number of nodes in Figs. 6c and 6d is 60. DR: detection rate; FPR: 
false positive rate 
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errors. The algorithms DID and MPA try to infer exact 
loss rates, which results in many false inferred packet 
losses. The TinyD2 algorithm uses multiple nodes to 
cooperate with each other, which can meet the re-
quirement of smaller loss rates. Our LLL algorithm 
uses a nondeterministic propagation model and is 
based on set-covering to locate the lossy links. This 
can reduce the false inferred faults and avoid missing 
the real faults; thus, the performance of LLL is better 
than those of the other algorithms. We also observe 
that the localization time slightly increases when 
there are packet losses and false positive symptoms. 
Explicit performance improvements in LLL are 
shown in Table 5. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

The overall detection rate and false positive rate 
achieved by the proposed LLL method in all three 
LLL scenes are 89.3% and 12.1%, respectively.  
Table 6 gives the overall improvements for LLL 
compared with the DID, MPA, TinyD2, and MCSED 
methods including the overall accuracy and overall 
computational complexity reduction. 

7.2  Experimental verification 

In this section, we compare the LLL, MCSED, 
MPA, DID, and TinyD2 algorithms using the Sen-
sorScope data. Here, we present the evaluation of the 
data trace collected in SensorScope as in Nguyen and 
Thiran (2006). We observe the data for 4 h and divide 
it into 60 slots. We run five algorithms on the data and 
report the average DR and FPR. For the selection of 
symptoms, we consider paths that deliver a threshold 
number of packets t, which is set to 20, 60, and 100. 
The larger the t, the smaller the errors in the infer-
ences, and the smaller the symptom coverage. Fig. 9 
shows the DR and FPR. 

Table 5  Average improvements in lossy link localiza-
tion in scene III  

Method 

Average improvement 

DR 
(%) 

FPR 
(%) 

DR 
(%) 

FPR 
(%) 

Failure 
localization 

time (s) 

DID 2.2 27.5 2.8 33.7 52.9 
MPA 4.5 23.2 3.9 42.9 69.6 

TinyD2 4.5 16.0 13.0 29.9 29.6 
MCSED 3.6 15.0 1.6 6.4 8.9 

The fraction of lossy links in Figs. 8a, 8b, and 8e is 0.15; the 
number of nodes in Figs. 8c and 8d is 60. DR: detection rate; FPR: 
false positive rate 

Fig. 7  Comparisons of detection rate, false positive rate, 
and localization time in scene II 
The fraction of lossy links in (a), (b), and (e) is 0.15; the 
number of nodes in (c) and (d) is 60 
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We can observe that our LLL algorithm outper-
forms the other four algorithms. This proves the va-
lidity of LLL. For the paths that deliver the packets 
with a threshold t=20, we observe a total of 50 links, 
and 12 out of these 50 links are actually lossy. The 
LLL and TinyD2 methods correctly identify eight 
lossy links. However, the MCSED, MPA, and DID 
methods correctly identify seven lossy links. More-
over, LLL, MCSED, MPA, and DID give two false 
positives, and TinyD2 gives three false positives. For 
the paths that deliver packets with a threshold t=100, 
the LLL algorithm locates 95% of the lossy links and 
has a negligible FPR (5%). The performance of the 
LLL algorithm is superior to those of the other ones. 
The explanation for this is that the increased delivery 
rate of the paths can decrease the false positive rate of 
the symptoms, which therefore increases the evalua-
tion accuracy. Note that the seven lossy links identi-
fied by MCSED, MPA, and DID are also the seven 
out of eight lossy links identified by the LLL and 
TinyD2 algorithms when t=20. It shows that the lossy 
links identified by the five algorithms are consistent. 
It is similar to the results in Nguyen and Thiran 
(2006). Furthermore, we give the percentage of im-
provement in LLL in Table 7. 

 
 

8  Conclusions 
 
Existing localization methods assume that mul-

tiple lossy links usually do not occur simultaneously. 
As a result, the failure localization usually has devia-
tions. We propose a probabilistic correlation based 
lossy link model that can express the association 
between failures. Our approach effectively represents 
the nondeterministic causal relationships between 
lossy links and symptoms due to the constructed 
PWBG model. CIERE removes the faults that are less 
likely to occur by adopting conditional information 
entropy. More importantly, the LLL issue is a set- 
covering problem after several derivations, and the 

Table 6  Overall improvements in lossy link localization 

Method Accuracy 
(%) 

Computational complexity 
reduction (%) 

DID   2.2   4.5 

MPA 27.5 23.2 

TinyD2   2.8   3.9 

MCSED 33.7 42.9 

 

Fig. 8  Comparisons of detection rate, false positive rate, 
and localization time in scene III 
The fraction of lossy links in (a), (b), and (e) is 0.15; the 
number of nodes in (c) and (d) is 60 
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lossy link hypothesis set can be obtained through our 
LLL algorithm. 

The proposed approach ensures that the failure 
localization is more accurate and efficient, even when 
multiple links fail simultaneously. Extensive simula-
tions and the experiment show that our proposed 
method delivers a higher LLL accuracy while signif-
icantly reducing computational complexity compared 
to the existing LLL approaches, i.e., MCSED, DID, 
MPA, and TinyD2.  

We evaluate our approach using only WSNs with 
tree topologies. For distributed application scenarios 
in WSNs, the topology may be very complex and may 
be widely distributed geographically. Therefore, there 
may be more than one sink, and thus the topology is 
not a tree structure. Further research should take into 
account failure localization in WSNs with a non-tree 
structure topology. 

In addition, our work has been implemented in 
WSNs with the IEEE 802.11 protocol. However, 
4G/5G protocols are different from the IEEE 802.11 
protocol, and their networking modes are different. 
Thus, future research into the applicability of our 
approach should take this into account. 
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