FOLLOWUS
Faculty of Engineering, Department of Electrical and Electronics Engineering, Ege University, Bornova-İzmir 35100, Turkey
Faculty of Engineering, Department of Electrical and Electronics Engineering, Dokuz Eylul University, Buca-İzmir 35160, Turkey
Cem CİVELEK, E-mail: cem.civelek@ege.edu.tr
[ "Özge CİHANBEĞENDİ, E-mail: ozge.sahin@deu.edu.tr" ]
Published:2020-04,
Received:10 January 2019,
Revised:06 March 2020,
Scan QR Code
CİVELEK CEM, CİHANBEĞENDİ ÖZGE. Construction of a new Lyapunov function for a dissipative gyroscopic system using the residual energy function. [J]. Frontiers of information technology & electronic engineering, 2020, 21(4): 629-634.
CİVELEK CEM, CİHANBEĞENDİ ÖZGE. Construction of a new Lyapunov function for a dissipative gyroscopic system using the residual energy function. [J]. Frontiers of information technology & electronic engineering, 2020, 21(4): 629-634. DOI: 10.1631/FITEE.1900014.
在自由度为4、张量有逆变(右上标)和协变(右下标)形式的耗散陀螺系统中,使用二阶线性微分方程建立拉格朗日耗散模型,即{L
D}模型。通过系统的{L
D}模型确定广义元素。满足勒让德变换先决条件时,可得哈密顿量。剩余能量函数(REF)由哈密顿量及损耗或耗散能量(为负)之和组成,将其作为李雅普诺夫函数,可通过李雅普诺夫第二方法作稳定性分析,并从数学上推导出稳定性条件。
In a dissipative gyroscopic system with four degrees of freedom and tensorial variables in contravariant (right upper index) and covariant (right lower index) forms
a Lagrangian-dissipative model
i.e.
{
L
D
}-model
is obtained using second-order linear differential equations. The generalized elements are determined using the {
L
D
}-model of the system. When the prerequisite of a Legendre transform is fulfilled
the Hamiltonian is found. The Lyapunov function is obtained as a residual energy function (REF). The REF consists of the sum of Hamiltonian and losses or dissipative energies (which are negative)
and can be used for stability by Lyapunov's second method. Stability conditions are mathematically proven.
李雅普诺夫函数剩余能量函数耗散陀螺系统稳定性
Lyapunov functionResidual energy functionStability of dissipative gyroscopic system
P Ao. . Potential in stochastic differential equations: novel construction. . J PhysA, , 2004. . 37((3):):L25--L30. . DOI:10.1088/0305-4470/37/3/L01http://doi.org/10.1088/0305-4470/37/3/L01..
Ⅵ Arnold. . Mathematical methods of classical mechanics (2nd Ed.). Graduate Texts in Mathematics, , ::New York, USASpringer-Verlag, , 1989. ..
EA Barbashin, , , NN Krasovsky. . On the stability of motion as a whole. . Doklady Akademii Nauk SSSR, , 1952. . 86((3):):453--546. . ..
J Chen, , , YX Guo, , , FX Mei. . New methods to find solutions and analyze stability of equilibrium of nonho-lonomic mechanical systems. . Acta Mech Sin, , 2018. . 34((6):):1136--1144. . DOI:10.1007/s10409-018-0768-xhttp://doi.org/10.1007/s10409-018-0768-x..
LQ Chen, , , JW Zu, , , J Wu. . Principal resonance in transverse nonlinear parametric vibration of an axially accelerating viscoelastic string. . Acta Mech Sin, , 2004. . 20((3):):307--316. . DOI:10.1007/BF02486723http://doi.org/10.1007/BF02486723..
C Civelek. . Stability analysis of engineering/physical dynamic systems using residual energy function. . Arch Contr Sci, , 2018. . 28((2):):201--222. . DOI:10.24425/123456http://doi.org/10.24425/123456..
C Civelek, , , U Diemar. . Stability Analysis Using Energy Functions, , ::Ilmenau (in German)Internationales Wissenschaftliches Koloquium, Technische Universitat Ilmenau, , 2003. ..
W Hahn. . Stability of Motion, , ::Berlin, Heidelberg, GermanySpringer-Verlag, , 1967. ..
M Heil, , , F Kitzka. . Grundkurs Theoretische Mechanik, , ::Wiesbaden, Germany (in German)Springer, Wiesbaden GmbH, , 1984. ..
ZL Huang, , , WQ Zhu. . Lyapunov exponent and almost sure asymptotic stability of quasi-linear gyroscopic systems. . Int J Nonl Mech, , 2000. . 35((4):):645--655. . DOI:10.1016/S0020-7462(99)00047-5http://doi.org/10.1016/S0020-7462(99)00047-5..
NN Krasovskii. . Problems of the Theory of Stability of Motion, , ::California, USAStanford University Press, , 1959. ..
C Kwon, , , P Ao, , , DJ Thouless. . Structure of stochastic dynamics near fixed points. . PNAS, , 2005. . 102((37):):13029--13033. . DOI:10.1073/pnas.0506347102http://doi.org/10.1073/pnas.0506347102..
JP Lasalle. . Some extensions of Liapunov's second method. . IRE Trans Circ Theory, , 1960. . 7((4):):520--527. . DOI:10.1109/TCT.1960.1086720http://doi.org/10.1109/TCT.1960.1086720..
AM Lyapunov. . The general problem of the stability of motion. . Int J Contr, , 1992. . 55((3):):531--534. . DOI:10.1080/00207179208934253http://doi.org/10.1080/00207179208934253..
YA Ma, , , QJ Tan, , , RS Yuan, , , 等. . Potential function in a continuous dissipative chaotic system: decomposition scheme and role of strange attractor. . Int J Bifurc Chaos, , 2014. . 24((2):):1450015DOI:10.1142/S0218127414500151http://doi.org/10.1142/S0218127414500151..
R Marino, , , S Nicosia. . Hamiltonian-type Lyapunov functions. . IEEE Trans Autom Contr, , 1983. . 28((11):):1055--1057. . DOI:10.1109/TAC.1983.1103168http://doi.org/10.1109/TAC.1983.1103168..
BMJ Maschke, , , R Ortega, , , AJ van der Schaft. . Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. . IEEE Trans Autom Contr, , 2000. . 45((8):):1498--1502. . DOI:10.1109/9.871758http://doi.org/10.1109/9.871758..
RI McLachlan, , , GRW Quispel, , , N Robidoux. . Unified approach to Hamiltonian systems, Poisson systems, gradient systems, and systems with Lyapunov functions or first integrals. . Phys Rev Lett, , 1998. . 81((12):):2399--2403. . DOI:10.1103/PhysRevLett.81.2399http://doi.org/10.1103/PhysRevLett.81.2399..
N Rouche, , , P Habets, , , M Laloy. . Stability Theory by Liapunov's Direct Method, , ::New York, USASpringer-Verlag, , 1977. ..
R Susse, , , C Civelek. . Analysis of engineering systems by means of Lagrange and Hamilton formalisms depending on contravariant, covariant tensorial variables. . Forsch Ingen, , 2003. . 68((1):):66--74. . DOI:10.1007/s10010-003-0102-yhttp://doi.org/10.1007/s10010-003-0102-y..
R Siisse, , , C Civelek. . Analysis of coupled dissipative dynamic systems of engineering using extended Hamiltonian H for classical and nonconservative Hamiltonian H for higher order Lagrangian systems. . Forsch Ingen, , 2013. . 77((1-2):):1--11. . DOI:10.1007/s10010-012-0158-7http://doi.org/10.1007/s10010-012-0158-7..
W Xu, , , B Yuan, , , P Ao. . Construction of Lyapunov function for dissipative gyroscopic system. . Chin Phys Lett, , 2011. . 28((5):):050201DOI:10.1088/0256-307X/28/5/050201http://doi.org/10.1088/0256-307X/28/5/050201..
L Yin, , , P Ao. . Existence and construction of dynamical potential in nonequilibrium processes without detailed balance. . J Phys A, , 2006. . 39((27):):8593--8601. . DOI:10.1088/0305-4470/39/27/003http://doi.org/10.1088/0305-4470/39/27/003DOI:10.1088/0305-4470/39/27/003http://doi.org/10.1088/0305-4470/39/27/003..
ZG Ying, , , WQ Zhu. . Exact stationary solutions of stochastically excited and dissipated gyroscopic systems. . Int J Nonl Mech, , 2000. . 35((5):):837--848. . DOI:10.1016/S0020-7462(99)00062-1http://doi.org/10.1016/S0020-7462(99)00062-1DOI:10.1016/S0020-7462(99)00062-1http://doi.org/10.1016/S0020-7462(99)00062-1..
T Yoshizawa. . Stability Theory by Liapunov's Second Method, , ::Tokio, JapanMathematical Society of Japan, , 1966. ..
RS Yuan, , , XN Wang, , , YA Ma, , , 等. . Exploring a noisy van der Pol type oscillator with a stochastic approach. . Phys Rev E, , 2013. . 87((6):):062109DOI:10.1103/PhysRevE.87.062109http://doi.org/10.1103/PhysRevE.87.062109..
RS Yuan, , , YA Ma, , , B Yuan, , , 等. . Lyapunov function as potential function: a dynamical equivalence. . Chin Phys B, , 2014. . 23((1):):010505DOI:10.1088/1674-1056/23/1/010505http://doi.org/10.1088/1674-1056/23/1/010505..
Publicity Resources
Related Articles
Related Author
Related Institution