FOLLOWUS
State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
Deparment of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
State Key Laboratory of Modern Optical Instrumentation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310058, China
Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
[ "", "Chen-lei PANG, first author of this invited paper, received his PhD degree in Optical Engineering in 2019 from Zhejiang University. He was awarded a scholarship under the State Scholarship Fund to study at California Institute of Technology as a joint PhD student from March 2018 to March 2019. He currently works at Zhejiang Lab, and his research interests focus on chip-based super-resolution imaging and defect inspection" ]
[ "", "Qing YANG, corresponding author of this invited paper, received her BS and PhD degrees in College of Materials Science and Engineering from Zhejiang University in 2001 and 2006, respectively. She was a visiting scholar at Georgia Tech from 2009 to 2012, and a visiting scientist at University of Cambridge in 2018. She is currently a professor at the State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, and an associate editor of Science Bulletin. Her research interests focus on smart and high-resolution sensing and imaging based on micro/nano-photonics" ]
Published:2020-08,
Received:24 April 2019,
Revised:03 March 2020,
Scan QR Code
CHEN-LEI PANG, XU LIU, WEI CHEN, et al. Chip-based waveguides for high-sensitivity biosensing and super-resolution imaging. [J]. Frontiers of information technology & electronic engineering, 2020, 21(8): 1134-1149.
CHEN-LEI PANG, XU LIU, WEI CHEN, et al. Chip-based waveguides for high-sensitivity biosensing and super-resolution imaging. [J]. Frontiers of information technology & electronic engineering, 2020, 21(8): 1134-1149. DOI: 10.1631/FITEE.1900211.
本综述介绍基于芯片的波导生物传感和成像技术的最新研究进展,这些技术可显著降低系统复杂度。这些技术利用波导表面的近场倏逝场与周围样品产生相互作用,实现对被检测生物分子的高灵敏探测和微纳样品的高信噪比超分辨成像。相关检测与成像波导芯片的制作过程简单,且同传统半导体加工工艺兼容,具有大规模生产应用前景。通过与近年来快速发展的片上集成光源结合,这些技术为实现片上系统集成的生物分子检测和超分辨成像提供了可能。
In this review
we introduce some chip-based waveguide biosensing and imaging techniques
which significantly reduce the complexity of the entire system. These techniques use a well-confined evanescent field to interact with the surrounding materials and achieve high sensitivity sensing and high signal-to-noise ratio (SNR) super-resolution imaging. The fabrication process of these chips is simple and compatible with conventional semiconductor fabrication methods
allowing high-yield production. Combined with recently developed chip-based light sources
these techniques offer the possibility of biosensing and super-resolution imaging based on integrated circuits.
波导探测波导成像倏逝场照明移频与频谱拼接
Waveguide-based sensingWaveguide-based imagingEvanescent illuminationFrequency shifting and stitching
E Abbe. . Beitrge zur theorie des mikroskops und der mikroskopischen wahrnehmung. . Arch f Mikrosk Anat, , 1873. . 9((1):):413--418. . DOI:10.1007/BF02956173http://doi.org/10.1007/BF02956173..
B Agnarsson, , , S Ingthorsson, , , T Gudjonsson, , , 等. . Evanescent-wave fluorescence microscopy using symmetric planar waveguides. . Opt Expr, , 2009. . 17((7):):5075--5082. . DOI:10.1364/OE.17.005075http://doi.org/10.1364/OE.17.005075..
B Agnarsson, , , A Lundgren, , , A Gunnarsson, , , 等. . Evanescent light-scattering microscopy for label-free interfacial imaging: from single sub-100 nm vesicles to live cells. . ACS Nano, , 2015. . 9((12):):11849--11862. . DOI:10.1021/acsnano.5b04168http://doi.org/10.1021/acsnano.5b04168..
AM Armani, , , KJ Vahala. . Heavy water detection using ultra-high-Q microcavities. . Opt Lett, , 2006. . 31((23):):1896--1898. . DOI:10.1364/OL.31.001896http://doi.org/10.1364/OL.31.001896..
D Axelrod. . Total internal reflection fluorescence microscopy in cell biology. . Traffic, , 2001. . 2((11):):764--774. . DOI:10.1034/j.1600-0854.2001.21104.xhttp://doi.org/10.1034/j.1600-0854.2001.21104.x..
D Axelrod, , , NL Thompson, , , TP Burghardt. . Total internal reflection fluorescent microscopy. . J Microsc-Oxford, , 1983. . 129((1):):19--28. . DOI:10.1111/j.1365-2818.1983.tb04158.xhttp://doi.org/10.1111/j.1365-2818.1983.tb04158.x..
M Bates, , , B Huang, , , GT Dempsey, , , 等. . Multicolor super-resolution imaging with photo-switchable fluorescent probes. . Science, , 2007. . 317((5845):):1749--1753. . DOI:10.1126/science.1146598http://doi.org/10.1126/science.1146598..
E Betzig, , , JK Trautman. . Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. . Science, , 1992. . 257((5067):):189--195. . DOI:10.1126/science.257.5067.189http://doi.org/10.1126/science.257.5067.189..
E Betzig, , , GH Patterson, , , R Sougrat, , , 等. . Imaging intracellular fluorescent proteins at nanometer resolution. . Science, , 2006. . 313((5793):):1642--1645. . DOI:10.1126/science.1127344http://doi.org/10.1126/science.1127344..
A Brandenburg. . Differential refractometry by an integrated-optical Young interferometer. . Sens Actuat B Chem, , 1997. . 39((1-3):):266--271. . DOI:10.1016/S0925-4005(97)80216-Xhttp://doi.org/10.1016/S0925-4005(97)80216-X..
A Brandenburg, , , R Henninger. . Integrated optical Young interferometer. . Appl Opt, , 1994. . 33((25):):5941--5947. . DOI:10.1364/AO.33.005941http://doi.org/10.1364/AO.33.005941..
CY Chao, , , W Fung, , , LJ Guo. . Polymer microring resonators for biochemical sensing applications. . IEEE J Sel Top Quant, , 2006. . 12((1):):134--142. . DOI:10.1109/JSTQE.2005.862945http://doi.org/10.1109/JSTQE.2005.862945..
JW Chung, , , R Bernhardt, , , JC Pyun. . Additive assay of cancer marker CA 19-9 by SPR biosensor. . Sens Actuat B Chem, , 2006. . 118((1-2):):28--32. . DOI:10.1016/j.snb.2006.04.015http://doi.org/10.1016/j.snb.2006.04.015..
AF Coskun, , , J Wong, , , D Khodadadi, , , 等. . A personalized food allergen testing platform on a cellphone. . Lab Chip, , 2013. . 13((4):):636--640. . DOI:10.1039/C2LC41152Khttp://doi.org/10.1039/C2LC41152K..
GH Cross, , , YT Ren, , , NJ Freeman. . Young's fringes from vertically integrated slab waveguides: applications to humidity sensing. . J Appl Phys, , 1999. . 86((11):):6483--6488. . DOI:10.1063/1.371712http://doi.org/10.1063/1.371712..
GH Cross, , , AA Reeves, , , S Brand, , , 等. . A new quantitative optical biosensor for protein characterisation. . Biosens Bioelectron, , 2003. . 19((4):):383--390. . DOI:10.1016/S0956-5663(03)00203-3http://doi.org/10.1016/S0956-5663(03)00203-3..
R Cush, , , JM Cronin, , , WJ Stewart, , , 等. . The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions. . Part Ⅰ: principle of operation and associated instrumentation. Biosens Bioelectron, , 1993. . 8((7-8):):347--354. . DOI:10.1016/0956-5663(93)80073-Xhttp://doi.org/10.1016/0956-5663(93)80073-X..
A Darafsheh, , , GF Walsh, , , L Dal Negro, , , 等. . Optical super-resolution by high-index liquid-immersed microspheres. . Appl Phys Lett, , 2012. . 101((14):):141128DOI:10.1063/1.4757600http://doi.org/10.1063/1.4757600..
K de Vos, , , I Bartolozzi, , , E Schacht, , , 等. . Silicon-on-insulator microring resonator for sensitive and label-free biosensing. . Opt Expr, , 2007. . 15((12):):7610--7615. . DOI:10.1364/OE.15.007610http://doi.org/10.1364/OE.15.007610..
R Diekmann, , , I Helle, , , CI ie, , , 等. . Chip-based wide field-of-view nanoscopy. . Nat Photon, , 2017. . 11((5):):322--328. . DOI:10.1038/nphoton.2017.55http://doi.org/10.1038/nphoton.2017.55..
XD Fan, , , IM White, , , S Shopova, , , 等. . Sensitive optical biosensors for unlabeled targets: a review. . Anal Chim Acta, , 2008. . 620((1-2):):8--26. . DOI:10.1016/j.aca.2008.05.022http://doi.org/10.1016/j.aca.2008.05.022..
J Flueckiger, , , S Schmidt, , , V Donzella, , , 等. . Sub-wavelength grating for enhanced ring resonator biosensor. . Opt Expr, , 2016. . 24((14):):15672--15686. . DOI:10.1364/OE.24.015672http://doi.org/10.1364/OE.24.015672..
NJ Goddard, , , D Pollard-Knight, , , CH Maule. . Real-time biomolecular interaction analysis using the resonant mirror sensor. . Analyst, , 1994. . 119((4):):583--588. . DOI:10.1039/AN9941900583http://doi.org/10.1039/AN9941900583..
NJ Goddard, , , K Singh, , , JP Hulme, , , 等. . Internally-referenced resonant mirror devices for dispersion compensation in chemical sensing and biosensing applications. . Sens Actuat A, , 2002. . 100((1):):1--9. . DOI:10.1016/S0924-4247(02)00062-6http://doi.org/10.1016/S0924-4247(02)00062-6..
CR Graham, , , D Leslie, , , DJ Squirrell. . Gene probe assays on a fibre-optic evanescent wave biosensor. . Biosens Bioelectron, , 1992. . 7((7):):487--493. . DOI:10.1016/0956-5663(92)80005-Vhttp://doi.org/10.1016/0956-5663(92)80005-V..
HM Grandin, , , B St dler, , , M Textor, , , 等. . Waveguide excitation fluorescence microscopy: a new tool for sensing and imaging the biointerface. . Biosens Bioelectron, , 2006. . 21((8):):1476--1482. . DOI:10.1016/j.bios.2005.06.011http://doi.org/10.1016/j.bios.2005.06.011..
H Guner, , , E Ozgur, , , G Kokturk, , , 等. . A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection. . Sens Actuat B Chem, , 2019. . 239571--577. . DOI:10.1016/j.snb.2016.08.061http://doi.org/10.1016/j.snb.2016.08.061..
MGL Gustafsson. . Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. . Proc Natl Acad Sci USA, , 2005. . 102((37):):13081--13086. . DOI:10.1073/pnas.0406877102http://doi.org/10.1073/pnas.0406877102..
MGL Gustafsson, , , L Shao, , , PM Carlton, , , 等. . Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. . Biophys J, , 2008. . 94((12):):4957--4970. . DOI:10.1529/biophysj.107.120345http://doi.org/10.1529/biophysj.107.120345..
NM Hanumegowda, , , IM White, , , H Oveys, , , 等. . Label-free protease sensors based on optical microsphere resonators. . Sens Lett, , 2005. . 3((4):):315--319. . DOI:10.1166/sl.2005.044http://doi.org/10.1166/sl.2005.044..
X Hao, , , CF Kuang, , , X Liu, , , 等. . Microsphere based microscope with optical super-resolution capability. . Appl Phys Lett, , 2011. . 99((20):):203102DOI:10.1063/1.3662010http://doi.org/10.1063/1.3662010..
X Hao, , , X Liu, , , CF Kuang, , , 等. . Far-field super-resolution imaging using near-field illumination by micro-fiber. . Appl Phys Lett, , 2013. . 102((1):):013104DOI:10.1063/1.4773572http://doi.org/10.1063/1.4773572..
A Hassanzadeh, , , M Nitsche, , , S Mittler, , , 等. . Waveguide evanescent field fluorescence microscopy: thin film fluorescence intensities and its application in cell biology. . Appl Phys Lett, , 2008. . 92((23):):233503DOI:10.1063/1.2937840http://doi.org/10.1063/1.2937840..
JT Hastings, , , J Guo, , , PD Keathley, , , 等. . Optimal self-referenced sensing using long- and short-range surface plasmons. . Opt Expr, , 2007. . 15((26):):17661--17672. . DOI:10.1364/OE.15.017661http://doi.org/10.1364/OE.15.017661..
B Hecht, , , B Sick, , , UP Wild, , , 等. . Scanning near-field optical microscopy with aperture probes: fundamentals and applications. . J Chem Phys, , 2000. . 12((18):):7761--7774. . DOI:10.1063/1.481382http://doi.org/10.1063/1.481382..
RG Heideman, , , RPH Kooyman, , , J Greve, , , 等. . Simple interferometer for evanescent field refractive index sensing as a feasibility study for an immunosensor. . Appl Opt, , 1991. . 30((12):):1474--1479. . DOI:10.1364/AO.30.001474http://doi.org/10.1364/AO.30.001474..
RG Heideman, , , RPH Kooyman, , , J Greve. . Performance of a highly sensitive optical waveguide Mach–Zehnder interferometer immunosensor. . Sens Actuat B Chem, , 1993. . 10((3):):209--217. . DOI:10.1016/0925-4005(93)87008-Dhttp://doi.org/10.1016/0925-4005(93)87008-D..
ST Hess, , , TPK Girirajan, , , MD Mason. . Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. . Biophys J, , 2006. . 91((11):):4258--4272. . DOI:10.1529/biophysj.106.091116http://doi.org/10.1529/biophysj.106.091116..
XD Hoa, , , AG Kirk, , , M Tabrizian. . Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. . Biosens Bioelectron, , 2007. . 23((2):):151--160. . DOI:10.1016/j.bios.2007.07.001http://doi.org/10.1016/j.bios.2007.07.001..
J Homola, , , SS Yee, , , G Gauglitz. . Surface plasmon resonance sensors. . Sens Actuat B Chem, , 1999. . 54((1-2):):3--15. . DOI:10.1016/S0925-4005(98)00321-9http://doi.org/10.1016/S0925-4005(98)00321-9..
R Horvth, , , LR Lindvold, , , NB Larsen. . Reverse-symmetry waveguides: theory and fabrication. . Appl Phys B, , 2002. . 74((4-5):):383--393. . DOI:10.1007/s003400200823http://doi.org/10.1007/s003400200823..
R Horvth, , , HC Pedersen, , , N Skivesen, , , 等. . Optical waveguide sensor for on-line monitoring of bacteria. . Opt Lett, , 2003. . 28((14):):1233--1235. . DOI:10.1364/OL.28.001233http://doi.org/10.1364/OL.28.001233..
R Horvth, , , HC Pedersen, , , N Skivesen, , , 等. . Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing. . Appl Phys Lett, , 2005. . 86((7):):071101DOI:10.1063/1.1862756http://doi.org/10.1063/1.1862756..
D Jimnez, , , E Bartolom, , , M Moreno, , , 等. . An integrated silicon ARROW Mach–Zehnder interferometer for sensing applications. . Opt Commun, , 1996. . 132((5-6):):437--441. . DOI:10.1016/0030-4018(96)00387-2http://doi.org/10.1016/0030-4018(96)00387-2..
J Kim, , , KB Song. . Recent progress of nano-technology with NSOM. . Micron, , 2007. . 38((4):):409--426. . DOI:10.1016/j.micron.2006.06.010http://doi.org/10.1016/j.micron.2006.06.010..
J Kim, , , Y Shin, , , AP Perera, , , 等. . Label-free, PCR-free chip-based detection of telomerase activity in bladder cancer cells. . Biosens Bioelectron, , 2013. . 45152--157. . DOI:10.1016/j.bios.2013.02.001http://doi.org/10.1016/j.bios.2013.02.001..
TA Klar, , , E Engel, , , SW Hell. . Breaking Abbe's diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes. . Phys Rev E Stat Nonl Soft Matter Phys, , 2001. . 64((6):):066613DOI:10.1103/PhysRevE.64.066613http://doi.org/10.1103/PhysRevE.64.066613..
E Krioukov, , , J Greve, , , C Otto. . Performance of integrated optical microcavities for refractive index and fluorescence sensing. . Sens Actuat B Chem, , 2003. . 90((1-3):):58--67. . DOI:10.1016/S0925-4005(03)00022-4http://doi.org/10.1016/S0925-4005(03)00022-4..
A Ksendzov, , , Y Lin. . Integrated optics ring-resonator sensors for protein detection. . Opt Lett, , 2005. . 30((24):):3344--3346. . DOI:10.1364/OL.30.003344http://doi.org/10.1364/OL.30.003344..
D Lee, , , YD Kim, , , M Kim, , , 等. . Realization of wafer-scale hyperlens device for sub-diffractional biomolecular imaging. . ACS Photon, , 2017. . 5((7):):2549--2554. . DOI:10.1021/acsphotonics.7b01182http://doi.org/10.1021/acsphotonics.7b01182..
B Liedberg, , , C Nylander, , , I Lunstr m. . Surface plasmon resonance for gas detection and biosensing. . Sens Actuat, , 1983. . 4((2):):299--304. . DOI:10.1016/0250-6874(83)85036-7http://doi.org/10.1016/0250-6874(83)85036-7..
PB Lillehoj, , , MC Huang, , , N Truong, , , 等. . Rapid electrochemical detection on a mobile phone. . Lab Chip, , 2013. . 13((15):):2950--2955. . DOI:10.1039/C3LC50306Bhttp://doi.org/10.1039/C3LC50306B..
SY Lin, , , KB Crozier. . Trapping-assisted sensing of particles and proteins using on-chip optical microcavities. . ACS Nano, , 2013. . 7((2):):1720--1730. . DOI:10.1021/nn305826jhttp://doi.org/10.1021/nn305826j..
VSY Lin, , , K Motesharei, , , KPS Dancil, , , 等. . A porous silicon-based optical interferometric biosensor. . Science, , 1997. . 278((5339):):840--843. . DOI:10.1126/science.278.5339.840http://doi.org/10.1126/science.278.5339.840..
Q Liu, , , XG Tu, , , KK Woo, , , 等. . Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide. . Sens Actuat B Chem, , 2013. . 188681--688. . DOI:10.1016/j.snb.2013.07.053http://doi.org/10.1016/j.snb.2013.07.053..
XW Liu, , , CF Kuang, , , X Hao, , , 等. . Fluorescent nanowire ring illumination for wide-field far-field subdiffraction imaging. . Phys Rev Lett, , 2017. . 118((7):):076101DOI:10.1103/PhysRevLett.118.076101http://doi.org/10.1103/PhysRevLett.118.076101..
ZW Liu, , , H Lee, , , Y Xiong, , , 等. . Far-field optical hyperlens magnifying sub-diffraction-limited objects. . Science, , 2007. . 315((5819):):1686DOI:10.1126/science.1137368http://doi.org/10.1126/science.1137368..
DDD Ma, , , CS Lee, , , FCK Au, , , 等. . Small-diameter silicon nanowire surfaces. . Science, , 2003. . 299((5614):):1874--1877. . DOI:10.1126/science.1080313http://doi.org/10.1126/science.1080313..
KM Millan, , , A Saraullo, , , SR Mikkelsen. . Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode. . Anal Chem, , 1994. . 66((18):):2943--2948. . DOI:10.1021/ac00090a023http://doi.org/10.1021/ac00090a023..
WE Moerner. . New directions in single-molecule imaging and analysis. . Proc Natl Acad Sci USA, , 2007. . 104((31):):12596--12602. . DOI:10.1073/pnas.0610081104http://doi.org/10.1073/pnas.0610081104..
PI Nikitin, , , AN Grigorenko, , , AA Beloglazov, , , 等. . Surface plasmon resonance interferometry for micro-array biosensing. . Sens Actuat A, , 2000. . 85((1-3):):189--193. . DOI:10.1016/S0924-4247(00)00386-1http://doi.org/10.1016/S0924-4247(00)00386-1..
M Noto, , , M Khoshsima, , , D Keng, , , 等. . Molecular weight dependence of a whispering gallery mode biosensor. . Appl Phys Lett, , 2005. . 87((22):):223901DOI:10.1063/1.2137902http://doi.org/10.1063/1.2137902..
CL Pang, , , XW Liu, , , MH Zhuge, , , 等. . High-contrast wide-field evanescent wave illuminated subdiffraction imaging. . Opt Lett, , 2017. . 42((21):):4569--4572. . DOI:10.1364/OL.42.004569http://doi.org/10.1364/OL.42.004569..
CL Pang, , , JX Li, , , MW Tang, , , 等. . On-chip super-resolution imaging with fluorescent polymer films. . Adv Funct Mat, , 2019. . 29((27):):1900126DOI:10.1002/adfm.201900126http://doi.org/10.1002/adfm.201900126..
PA Prakash, , , U Yogeswaran, , , SM Chen. . A review on direct electrochemistry of catalase for electrochemical sensors. . Sensors, , 2009. . 9((3):):1821--1844. . DOI:10.3390/s90301821http://doi.org/10.3390/s90301821..
F Prieto, , , B Sepúlveda, , , A Calle, , , 等. . Integrated Mach–Zehnder interferometer based on ARROW structures for biosensor applications. . Sens Actuat B Chem, , 2003. . 92((1-2):):151--158. . DOI:10.1016/S0925-4005(03)00257-0http://doi.org/10.1016/S0925-4005(03)00257-0..
S Ramachandran, , , DA Cohen, , , AP Quist, , , 等. . High performance, LED powered, waveguide based total internal reflection microscopy. . Sci Rep, , 2013. . 32133DOI:10.1038/srep02133http://doi.org/10.1038/srep02133..
J Rho, , , ZL Ye, , , Y Xiong, , , 等. . Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. . Nat Commun, , 2010. . 1143DOI:10.1038/ncomms1148http://doi.org/10.1038/ncomms1148..
A Roda, , , E Michelini, , , M Zangheri, , , 等. . Smartphone-based biosensors: a critical review and perspectives. . Trends Anal Chem, , 2016. . 79317--325. . DOI:10.1016/j.trac.2015.10.019http://doi.org/10.1016/j.trac.2015.10.019..
N Rotenberg, , , L Kuipers. . Mapping nanoscale light fields. . Nat Photon, , 2014. . 8((12):):919--926. . DOI:10.1038/nphoton.2014.285http://doi.org/10.1038/nphoton.2014.285..
L Schermelleh, , , R Heintzmann, , , H Leonhardt. . A guide to super-resolution fluorescence microscopy. . J Cell Biol, , 2010. . 190((2):):165--175. . DOI:10.1083/jcb.201002018http://doi.org/10.1083/jcb.201002018..
EF Schipper, , , AM Brugman, , , C Dominguez, , , 等. . The realization of an integrated Mach–Zehnder waveguide immunosensor in silicon technology. . Sens Actuat B Chem, , 1997. . 40((2-3):):147--153. . DOI:10.1016/S0925-4005(97)80254-7http://doi.org/10.1016/S0925-4005(97)80254-7..
BH Schneider, , , JG Edwards, , , NF Hartman. . Hartman interferometer: versatile integrated optic sensor for label-free, real-time quantification of nucleic acids, proteins, and pathogens. . Clin Chem, , 1997. . 43((9):):1757--1763. . ..
BH Schneider, , , EL Dickinson, , , MD Vach, , , 等. . Highly sensitive optical chip immunoassays in human serum. . Biosens Bioelectron, , 2000. . 15((1-2):):13--22. . DOI:10.1016/S0956-5663(00)00056-7http://doi.org/10.1016/S0956-5663(00)00056-7..
A Schweinsberg, , , S Hocd, , , N Lepeshkin, , , 等. . An environmental sensor based on an integrated optical whispering gallery mode disk resonator. . Sens Actuat B Chem, , 2007. . 123((2):):727--732. . DOI:10.1016/j.snb.2006.10.007http://doi.org/10.1016/j.snb.2006.10.007..
A Serpengzel, , , S Arnold, , , G Griffel. . Excitation of resonances of microspheres on an optical fiber. . Opt Lett, , 1995. . 20((7):):654--656. . DOI:10.1364/OL.20.000654http://doi.org/10.1364/OL.20.000654..
N Skivesen, , , R Horvath, , , HC Pedersen. . Multimode reverse-symmetry waveguide sensor for broad-range refractometry. . Opt Lett, , 2003. . 28((24):):2473--2475. . DOI:10.1364/OL.28.002473http://doi.org/10.1364/OL.28.002473..
N Skivesen, , , R Horvath, , , HC Pedersen. . Optimization of metal-clad waveguide sensors. . Sens Actuat B Chem, , 2005. . 106((2):):668--676. . DOI:10.1016/j.snb.2004.09.014http://doi.org/10.1016/j.snb.2004.09.014..
N Skivesen, , , R Horvath, , , S Thinggaard, , , 等. . Deep-probe metal-clad waveguide biosensors. . Biosens Bioelectron, , 2007. . 22((7):):1282--1288. . DOI:10.1016/j.bios.2006.05.025http://doi.org/10.1016/j.bios.2006.05.025..
H Su, , , KMR Kallury, , , M Thompson, , , 等. . Interfacial nucleic acid hybridization studied by random primer 32P labeling and liquid-phase acoustic network analysis. . Anal Chem, , 1994. . 66((6):):769--777. . DOI:10.1021/ac00078a002http://doi.org/10.1021/ac00078a002..
JB Sun, , , MI Shalaev, , , NM Litchinitser. . Experimental demonstration of a non-resonant hyperlens in the visible spectral range. . Nat Commun, , 2015. . 67201DOI:10.1038/ncomms8201http://doi.org/10.1038/ncomms8201..
V Sundram, , , JS Nanda, , , K Rajagopal, , , 等. . Domain truncation studies reveal that the streptokinase-plasmin activator complex utilizes long range protein-protein interactions with macromolecular substrate to maximize catalytic turnover. . J Biol Chem, , 1993. . 278((33):):30569--30577. . DOI:10.1074/jbc.M303799200http://doi.org/10.1074/jbc.M303799200..
JD Suter, , , IM White, , , HY Zhu, , , 等. . Thermal characterization of liquid core optical ring resonator sensors. . Appl Opt, , 2007. . 46((3):):386--389. . DOI:10.1364/AO.46.000389http://doi.org/10.1364/AO.46.000389..
T Taniguchi, , , A Hirowatari, , , T Ikeda, , , 等. . Detection of antibody-antigen reaction by silicon nitride slot-ring biosensors using protein G. . Opt Commun, , 2016. . 36516--23. . DOI:10.1016/j.optcom.2015.11.068http://doi.org/10.1016/j.optcom.2015.11.068..
I Teraoka, , , S Arnold. . Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications. . J Opt Soc Am B, , 2006. . 23((7):):1381--1389. . DOI:10.1364/JOSAB.23.001381http://doi.org/10.1364/JOSAB.23.001381..
BZ Tian, , , T Cohen-Karni, , , Q Qing, , , 等. . Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. . Science, , 2010. . 329((5993):):830--834. . DOI:10.1126/science.1192033http://doi.org/10.1126/science.1192033..
K Tiefenthaler, , , W Lukosz. . Sensitivity of grating couplers as integrated-optical chemical sensors. . J Opt Soc Am B, , 1989. . 6((2):):209--220. . DOI:10.1364/JOSAB.6.000209http://doi.org/10.1364/JOSAB.6.000209..
L Tong, , , RR Gattass, , , JB Ashcom, , , 等. . Subwavelength-diameter silica wires for low-loss optical wave guiding. . Nature, , 2003. . 426((6968):):816--819. . DOI:10.1038/nature02193http://doi.org/10.1038/nature02193..
ZB Wang, , , W Guo, , , L Li, , , 等. . Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. . Nat Commun, , 2011. . 2218DOI:10.1038/ncomms1211http://doi.org/10.1038/ncomms1211..
HJ Watts, , , CR Lowe, , , DV Pollard-Knight. . Optical biosensor for monitoring microbial cells. . Anal Chem, , 1994. . 66((15):):2465--2470. . DOI:10.1021/ac00087a010http://doi.org/10.1021/ac00087a010..
HJ Watts, , , D Yeung, , , H Partees. . Real-time detection and quantification of DNA hybridization by an optical biosensor. . Anal Chem, , 1995. . 67((23):):4283--4289. . DOI:10.1021/ac00119a013http://doi.org/10.1021/ac00119a013..
M Weisser, , , G Tovar, , , S Mittler-Neher, , , 等. . Specific bio-recognition reactions observed with an integrated Mach–Zehnder interferometer. . Biosens Bioelectron, , 1999. . 14((4):):405--411. . DOI:10.1016/S0956-5663(98)00124-9http://doi.org/10.1016/S0956-5663(98)00124-9..
IM White, , , XD Fan. . On the performance quantification of resonant refractive index sensors. . Opt Expr, , 2008. . 16((2):):1020--1028. . DOI:10.1364/OE.16.001020http://doi.org/10.1364/OE.16.001020..
IM White, , , J Gohring, , , XD Fan. . SERS-based detection in an optofluidic ring resonator platform. . Opt Expr, , 2007. . 15((25):):17433--17442. . DOI:10.1364/OE.15.017433http://doi.org/10.1364/OE.15.017433..
KI Willig, , , SO Rizzoli, , , V Westphal, , , 等. . STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. . Nature, , 2006. . 440((7086):):935--939. . DOI:10.1038/nature04592http://doi.org/10.1038/nature04592..
I Yahiatne, , , S Hennig, , , M Mller, , , 等. . Entropy-based super-resolution imaging (ESI): from disorder to fine detail. . ACS Photon, , 2015. . 2((8):):1049--1056. . DOI:10.1021/acsphotonics.5b00307http://doi.org/10.1021/acsphotonics.5b00307..
A Yalcin, , , KC Popat, , , JC Aldridge, , , 等. . Optical sensing of biomolecules using microring resonators. . IEEE J Sel Top Quant, , 2006. . 12((1):):148--155. . DOI:10.1109/JSTQE.2005.863003http://doi.org/10.1109/JSTQE.2005.863003..
Q Yang, , , WH Wang, , , S Xu, , , 等. . Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect. . Nano Lett, , 2011. . 11((9):):4012--4017. . DOI:10.1021/nl202619dhttp://doi.org/10.1021/nl202619d..
A Ymeti, , , JS Kanger, , , J Greve, , , 等. . Realization of a multichannel integrated Young interferometer chemical sensor. . Appl Opt, , 2003. . 42((28):):5649--5660. . DOI:10.1364/AO.42.005649http://doi.org/10.1364/AO.42.005649..
L Yu, , , ZZ Shi, , , C Fang, , , 等. . Disposable lateral flow-through strip for smartphone-camera to quantitatively detect alkaline phosphatase activity in milk. . Biosens Bioelectron, , 2015. . 69307--315. . DOI:10.1016/j.bios.2015.02.035http://doi.org/10.1016/j.bios.2015.02.035..
F Zenhausern, , , Y Martin, , , HK Wickramasinghe. . Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution. . Science, , 1995. . 269((5227):):1083--1085. . DOI:10.1126/science.269.5227.1083http://doi.org/10.1126/science.269.5227.1083..
JJ Zhang, , , GX Li. . Third-generation biosensors based on the direct electron transfer of proteins. . Anal Sci, , 2004. . 20((4):):603--609. . DOI:10.2116/analsci.20.603http://doi.org/10.2116/analsci.20.603..
JL Zhang, , , I Khan, , , QW Zhang, , , 等. . Lipopolysaccharides detection on a grating-coupled surface plasmon resonance smartphone biosensor. . Biosens Bioelectron, , 2018. . 99312--317. . DOI:10.1016/j.bios.2017.07.048http://doi.org/10.1016/j.bios.2017.07.048..
HY Zhu, , , JD Suter, , , I White, , , 等. . Aptamer based microsphere biosensor for thrombin detection. . Sensors, , 2006. . 6((8):):785--795. . DOI:10.3390/s6080785http://doi.org/10.3390/s6080785..
M Zourob, , , NJ Goddard. . Metal clad leaky waveguides for chemical and biosensing applications. . Biosens Bioelectron, , 2005. . 20((9):):1718--1727. . DOI:10.1016/j.bios.2004.06.031http://doi.org/10.1016/j.bios.2004.06.031..
M Zourob, , , S Mohr, , , BJ Brown, , , 等. . The development of a metal clad leaky waveguide sensor for the detection of particles. . Sens Actuat B Chem, , 2003a. . 90296--307. . DOI:10.1016/S0925-4005(03)00052-2http://doi.org/10.1016/S0925-4005(03)00052-2..
M Zourob, , , S Mohr, , , PR Fielden, , , 等. . Small-volume refractive index and fluorescence sensor for micro total analytical system (-TAS) applications. . Sens Actuat B Chem, , 2003b. . 94304--312. . DOI:10.1016/S0925-4005(03)00460-Xhttp://doi.org/10.1016/S0925-4005(03)00460-X..
Publicity Resources
Related Articles
Related Author
Related Institution