FOLLOWUS
College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China
School of Information Science and Engineering, Southeast University, Nanjing 210096, China
School of Cyber Science and Engineering, Southeast University, Nanjing 210096, China
School of Automation, Central South University, Changsha 410083, China
[ "ZHONG Jie,E-mail:zhongjie0615@gmail.com" ]
[ "LI Bo-wen,E-mail:qfhxjy@126.com" ]
[ "LIU Yang,E-mail:liuyang@zjnu.edu.cn" ]
[ "GUI Wei-hua,E-mail:gwh@csu.edu.cn" ]
Published:2020-02,
Published Online:14 October 2019,
Received:07 May 2019,
Revised:12 September 2019,
Scan QR Code
JIE ZHONG, BO-WEN LI, YANG LIU, et al. Output feedback stabilizer design of Boolean networks based on network structure. [J]. Frontiers of information technology & electronic engineering, 2020, 21(2): 247-259.
JIE ZHONG, BO-WEN LI, YANG LIU, et al. Output feedback stabilizer design of Boolean networks based on network structure. [J]. Frontiers of information technology & electronic engineering, 2020, 21(2): 247-259. DOI: 10.1631/FITEE.1900229.
在基因调控网络中,稳态结构可以用来表示细胞死亡或基因不受调控生长的进化行为。本文利用矩阵半张量积工具,分析与研究布尔网络输出反馈镇定器的设计。基于描述节点间耦合关系的网络结构信息,设计了输出反馈镇定器以实现全局稳定。与传统牵制控制器设计相比,输出反馈镇定器设计不再基于布尔网络的状态转移矩阵,可以有效确定牵制节点,降低计算复杂度。本文所提方法有效避免了计算2
n
×2
n
维的状态转移矩阵,这里
n
是布尔网络的节点数。最后,分别在一个信号转导网络和一个黑腹果蝇极性基因网络进行仿真模拟,证明该方法有效。结果表明,与传统布尔网络牵制控制相比,该方法更为简单、简洁。
In genetic regulatory networks
a stable configuration can represent the evolutionary behavior of cell death or unregulated growth in genes. We present analytical investigations on output feedback stabilizer design of Boolean networks (BNs) to achieve global stabilization via the semi-tensor product method. Based on network structure information describing coupling connections among nodes
an output feedback stabilizer is designed to achieve global stabilization. Compared with the traditional pinning control design
the output feedback stabilizer design is not based on the state transition matrix of BNs
which can efficiently determine pinning control nodes and reduce computational complexity. Our proposed method is efficient in that the calculation of the state transition matrix with dimension 2
n
× 2
n
is avoided; here n is the number of nodes in a BN. Finally
a signal transduction network and a D. melanogaster segmentation polarity gene network are presented to show the efficiency of the proposed method. Results are shown to be simple and concise
compared with traditional pinning control for BNs.
布尔网络输出反馈镇定器网络结构矩阵半张量积
Boolean networksOutput feedback stabilizerNetwork structureSemi-tensor product of matrices
J Aracena. . Maximum number of fixed points in regulatory Boolean networks. . Bull Math Biol, , 2008. . 70((5):):1398--1409. . DOI:10.1007/s11538-008-9304-7http://doi.org/10.1007/s11538-008-9304-7..
F Ay, , , F Xu, , , T Kahveci. . Scalable steady state analysis of Boolean biological regulatory networks. . PLoS ONE, , 2009. . 4((12):):e7992DOI:10.1371/journal.pone.0007992http://doi.org/10.1371/journal.pone.0007992..
J Bang-Jensen, , , G Gutin. . Digraphs: Theory, Algorithms and Applications. . Springer New York, USA, , 2008. ..
N Bof, , , E Fornasini, , , ME Valcher. . Output feedback stabilization of Boolean control networks. . Automatica, , 2015. . 5721--28. . DOI:10.1016/j.automatica.2015.03.032http://doi.org/10.1016/j.automatica.2015.03.032..
C Campbell, , , R Albert. . Stabilization of perturbed Boolean network attractors through compensatory interactions. . BMC Syst Biol, , 2014. . 8Article 53DOI:10.1186/1752-0509-8-53http://doi.org/10.1186/1752-0509-8-53..
DZ Cheng, , , T Liu. . A survey on logical control systems. . Unman Syst, , 2016. . 4((1):):97--116. . DOI:10.1142/S2301385016400100http://doi.org/10.1142/S2301385016400100..
DZ Cheng, , , HS Qi, , , ZQ Li. . Analysis and Control of Boolean Networks: a Semi-tensor Product Approach. . Springer London, UK, , 2010. ..
DZ Cheng, , , HS Qi, , , ZQ Li, , , 等. . Stability and stabilization of Boolean networks. . Int J Robust Nonlin Contr, , 2011. . 21((2):):134--156. . DOI:10.1002/rnc.1581http://doi.org/10.1002/rnc.1581..
HB Fan, , , JE Feng, , , M Meng, , , 等. . General decomposition of fuzzy relations: semi-tensor product approach. . Fuzzy Sets Syst, in press, , 2018. . DOI:10.1016/j.fss.2018.12.012http://doi.org/10.1016/j.fss.2018.12.012..
E Fornasini, , , ME Valcher. . Observability, reconstructibility and state observers of Boolean control networks. . IEEE Trans Autom Contr, , 2013. . 58((6):):1390--1401. . DOI:10.1109/TAC.2012.2231592http://doi.org/10.1109/TAC.2012.2231592..
Y Guo, , , P Wang, , , W Gui, , , 等. . Set stability and set stabilization of Boolean control networks based on invariant subsets. . Automatica, , 2015. . 61106--112. . DOI:10.1016/j.automatica.2015.08.006http://doi.org/10.1016/j.automatica.2015.08.006..
S Kauffman. . Metabolic stability and epigenesis in randomly constructed genetic nets. . J Theor Biol, , 1969. . 22((3):):437--467. . DOI:10.1016/0022-5193(69)90015-0http://doi.org/10.1016/0022-5193(69)90015-0..
S Kauffman, , , C Peterson, , , B Samuelsson, , , 等. . Random Boolean network models and the yeast transcriptional network. . PNAS, , 2003. . 100((25):):14796--14799. . DOI:10.1073/pnas.2036429100http://doi.org/10.1073/pnas.2036429100..
K Kobayashi, , , K Hiraishi. . Design of probabilistic Boolean networks based on network structure and steady-state probabilities. . IEEE Trans Neur Netw Learn Syst, , 2017. . 28((8):):1966--1971. . DOI:10.1109/TNNLS.2016.2572063http://doi.org/10.1109/TNNLS.2016.2572063..
D Laschov, , , M Margaliot. . Controllability of Boolean control networks via the Perron-Frobenius theory. . Automatica, , 2012. . 48((6):):1218--1223. . DOI:10.1016/j.automatica.2012.03.022http://doi.org/10.1016/j.automatica.2012.03.022..
BW Li, , , JQ Lu, , , J Zhong, , , 等. . Fast-time stability of temporal Boolean networks. . IEEE Trans Neur Netw Learn Syst, , 2019a. . 30((8):):2285--2294. . DOI:10.1109/TNNLS.2018.2881459http://doi.org/10.1109/TNNLS.2018.2881459..
BW Li, , , JQ Lu, , , Y Liu, , , 等. . The outputs robustness of Boolean control networks via pinning control. . IEEE Trans Contr Netw Syst, in press, , 2019b. . DOI:10.1109/TCNS.2019.2913543http://doi.org/10.1109/TCNS.2019.2913543..
BW Li, , , JG Lou, , , Y Liu, , , 等. . Robust invariant set analysis of Boolean networks. . Complexity, , 2019c. . 2019Article 2731395DOI:10.1155/2019/2731395http://doi.org/10.1155/2019/2731395..
FF Li. . Pinning control design for the stabilization of Boolean networks. . IEEE Trans Neur Netw Learn Syst, , 2015. . 27((7):):1585--1590. . DOI:10.1109/TNNLS.2015.2449274http://doi.org/10.1109/TNNLS.2015.2449274..
FF Li. . Pinning control design for the synchronization of two coupled Boolean networks. . IEEE Trans Circ Syst II, , 2016. . 63((3):):309--313. . DOI:10.1109/TCSII.2015.2482658http://doi.org/10.1109/TCSII.2015.2482658..
HT Li, , , YZ Wang. . Output feedback stabilization control design for Boolean control networks. . Automatica, , 2013. . 49((12):):3641--3645. . DOI:10.1016/j.automatica.2013.09.023http://doi.org/10.1016/j.automatica.2013.09.023..
HT Li, , , YZ Wang. . Further results on feedback stabilization control design of Boolean control networks. . Automatica, , 2017. . 83303--308. . DOI:10.1016/j.automatica.2017.06.043http://doi.org/10.1016/j.automatica.2017.06.043..
R Li, , , M Yang, , , TG Chu. . State feedback stabilization for Boolean control networks. . IEEE Trans Autom Contr, , 2013. . 58((7):):1853--1857. . DOI:10.1109/TAC.2013.2238092http://doi.org/10.1109/TAC.2013.2238092..
XD Li, , , DWC Ho, , , JD Cao. . Finite-time stability and settling-time estimation of nonlinear impulsive systems. . Automatica, , 2019. . 99361--368. . DOI:10.1016/j.automatica.2018.10.024http://doi.org/10.1016/j.automatica.2018.10.024..
YY Li, , , J Zhong, , , JQ Lu, , , 等. . On robust synchronization of drive-response Boolean control networks with disturbances. . Math Probl Eng, , 2017. . 2018Article 1737685DOI:10.1155/2018/1737685http://doi.org/10.1155/2018/1737685..
YY Li, , , BW Li, , , Y Liu, , , 等. . Set stability and stabilization of switched Boolean networks with statebased switching. . IEEE Access, , 2018a. . 635624--35630. . DOI:10.1109/ACCESS.2018.2851391http://doi.org/10.1109/ACCESS.2018.2851391..
YY Li, , , JG Lou, , , Z Wang, , , 等. . Synchronization of dynamical networks with nonlinearly coupling function under hybrid pinning impulsive controllers. . J Franklin Inst, , 2018b. . 355((14):):6520--6530. . DOI:10.1016/j.jfranklin.2018.06.021http://doi.org/10.1016/j.jfranklin.2018.06.021..
Y Liu, , , BW Li, , , JQ Lu, , , 等. . Pinning control for the disturbance decoupling problem of Boolean networks. . IEEE Trans Autom Contr, , 2017. . 62((12):):6595--6601. . DOI:10.1109/TAC.2017.2715181http://doi.org/10.1109/TAC.2017.2715181..
JQ Lu, , , ML Li, , , Y Liu, , , 等. . Nonsingularity of Grainlike cascade FSRs via semi-tensor product. . Sci China Inform Sci, , 2018a. . 61010204DOI:10.1007/s11432-017-9269-6http://doi.org/10.1007/s11432-017-9269-6..
JQ Lu, , , LJ Sun, , , Y Liu, , , 等. . Stabilization of Boolean control networks under aperiodic sampled-data control. . SIAM J Contr Optim, , 2018b. . 56((6):):4385--4404. . DOI:10.1137/18M1169308http://doi.org/10.1137/18M1169308..
JQ Lu, , , ML Li, , , TW Huang, , , 等. . The transformation between the Galois NLFSRs and the Fibonacci NLFSRs via semi-tensor product of matrices. . Automatica, , 2018c. . 96393--397. . DOI:10.1016/j.automatica.2018.07.011http://doi.org/10.1016/j.automatica.2018.07.011..
Y Mao, , , L Wang, , , Y Liu, , , 等. . Stabilization of evolutionary networked games with length-r information. . Appl Math Comput, , 2018. . 337442--451. . DOI:10.1016/j.amc.2018.05.027http://doi.org/10.1016/j.amc.2018.05.027..
M Meng, , , J Lam, , , J Feng, , , 等. . Stability and guaranteed cost analysis of time-triggered Boolean networks. . IEEE Trans Neur Netw Learn Syst, , 2018. . 29((8):):3893--3899. . DOI:10.1109/TNNLS.2017.2737649http://doi.org/10.1109/TNNLS.2017.2737649..
F Mori, , , A Mochizuki. . Expected number of fixed points in Boolean networks with arbitrary topology. . Phys Rev Lett, , 2017. . 119028301DOI:10.1103/PhysRevLett.119.028301http://doi.org/10.1103/PhysRevLett.119.028301..
D Murrugarra, , , A Veliz-Cuba, , , B Aguilar, , , 等. . Identification of control targets in Boolean molecular network models via computational algebra. . BMC Syst Biol, , 2016. . 10Article 94DOI:10.1186/s12918-016-0332-xhttp://doi.org/10.1186/s12918-016-0332-x..
J Pan, , , J Feng, , , M Meng. . Steady-state analysis of probabilistic Boolean networks. . J Franklin Inst, , 2019. . 356((5):):2994--3009. . DOI:10.1016/j.jfranklin.2019.01.039http://doi.org/10.1016/j.jfranklin.2019.01.039..
L Paulevé, , , A Richard. . Static analysis of Boolean networks based on interaction graphs: a survey. . Electron Notes Theor Comput Sci, , 2012. . 28493--104. . DOI:10.1016/j.entcs.2012.05.017http://doi.org/10.1016/j.entcs.2012.05.017..
F Robert. . Discrete Iterations: a Metric Study. . Springer New York, USA, , 1986. ..
A Saadatpour, , , I Albert, , , R Albert. . Attractor analysis of asynchronous Boolean models of signal transduction networks. . J Theor Biol, , 2010. . 266((4):):641--656. . DOI:10.1016/j.jtbi.2010.07.022http://doi.org/10.1016/j.jtbi.2010.07.022..
A Saadatpour, , , R Wang, , , A Liao, , , 等. . Dynamical and structural analysis of a T cell survival network identifies novel candidate therapeutic targets for large granular lymphocyte leukemia. . PLoS Comput Biol, , 2011. . 7((11):):e1002267DOI:10.1371/journal.pcbi.1002267http://doi.org/10.1371/journal.pcbi.1002267..
LY Tong, , , Y Liu, , , YY Li, , , 等. . Robust control invariance of probabilistic Boolean control networks via event-triggered control. . IEEE Access, , 2018. . 637767--37774. . DOI:10.1109/ACCESS.2018.2828128http://doi.org/10.1109/ACCESS.2018.2828128..
B Wang, , , J Feng. . On detectability of probabilistic Boolean networks. . Inform Sci, , 2019. . 483383--395. . DOI:10.1016/j.ins.2019.01.055http://doi.org/10.1016/j.ins.2019.01.055..
Y Wu, , , T Shen. . Policy iteration algorithm for optimal control of stochastic logical dynamical systems. . IEEE Trans Neur Netw Learn Syst, , 2018. . 29((5):):2031--2036. . DOI:10.1109/TNNLS.2017.2661863http://doi.org/10.1109/TNNLS.2017.2661863..
YF Xiao, , , ER Dougherty. . The impact of function perturbations in Boolean networks. . Bioinformatics, , 2007. . 23((10):):1265--1273. . DOI:10.1093/bioinformatics/btm093http://doi.org/10.1093/bioinformatics/btm093..
M Yang, , , R Li, , , TG Chu. . Controller design for disturbance decoupling of Boolean control networks. . Automatica, , 2013. . 49((1):):273--277. . DOI:10.1016/j.automatica.2012.10.010http://doi.org/10.1016/j.automatica.2012.10.010..
Y Yu, , , J Feng, , , J Pan, , , 等. . Block decoupling of Boolean control networks. . IEEE Trans Autom Contr, , 2019. . 64((8):):3129--3140. . DOI:10.1109/TAC.2018.2880411http://doi.org/10.1109/TAC.2018.2880411..
K Zhang, , , L Zhang. . Observability of Boolean control networks: a unified approach based on finite automata. . IEEE Trans Autom Contr, , 2016. . 61((9):):2733--2738. . DOI:10.1109/TAC.2015.2501365http://doi.org/10.1109/TAC.2015.2501365..
Y Zhao, , , BK Ghosh, , , D Cheng. . Control of large-scale Boolean networks via network aggregation. . IEEE Trans Neur Netw Learn Syst, , 2016. . 27((7):):1527--1536. . DOI:10.1109/TNNLS.2015.2442593http://doi.org/10.1109/TNNLS.2015.2442593..
QX Zhu, , , W Lin. . Stabilizing Boolean networks by optimal event-triggered feedback control. . Syst Contr Lett, , 2019. . 12640--47. . DOI:10.1016/j.sysconle.2019.03.002http://doi.org/10.1016/j.sysconle.2019.03.002..
QX Zhu, , , Y Liu, , , J Lu, , , 等. . On the optimal control of Boolean control networks. . SIAM J Contr Optim, , 2018. . 56((2):):1321--1341. . DOI:10.1137/16M1070281http://doi.org/10.1137/16M1070281..
QX Zhu, , , Y Liu, , , J Lu, , , 等. . Further results on the controllability of Boolean control networks. . IEEE Trans Autom Contr, , 2019. . 64((1):):440--442. . DOI:10.1109/TAC.2018.2830642http://doi.org/10.1109/TAC.2018.2830642..
SY Zhu, , , JG Lou, , , Y Liu, , , 等. . Event-triggered control for the stabilization of probabilistic Boolean control networks. . Complexity, , 2018. . 2018Article 9259348DOI:10.1155/2018/9259348http://doi.org/10.1155/2018/9259348..
Publicity Resources
Related Articles
Related Author
Related Institution