FOLLOWUS
China Academy of Launch Vehicle Technology, Beijing 100076, China
Beijing Aerospace Automatic Control Institute, Beijing 100854, China
GNC Systems Department, DLR Institute of Space Systems, Bremen 28001, Germany
School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
Zheng-yu SONG, E-mail: zycalt12@sina.com
Published:2020-05,
Published Online:14 March 2020,
Received:31 August 2019,
Revised:01 March 2020,
Scan QR Code
ZHENG-YU SONG, CONG WANG, STEPHAN THEIL, et al. Survey of autonomous guidance methods for powered planetary landing. [J]. Frontiers of information technology & electronic engineering, 2020, 21(5): 652-674.
ZHENG-YU SONG, CONG WANG, STEPHAN THEIL, et al. Survey of autonomous guidance methods for powered planetary landing. [J]. Frontiers of information technology & electronic engineering, 2020, 21(5): 652-674. DOI: 10.1631/FITEE.1900458.
本文总结了天体表面精确软着陆的自主制导方法。首先回顾了动力下降制导方法的发展,重点介绍了其在约束处理和提升计算效率方面的贡献。随着对可重复使用运载器需求的不断增加,以及太空探索带来更多的科学回报,定点软着陆成为一项基本要求。不同于过去任务中公里级的着陆精度,未来行星着陆器在满足全部速度和姿态约束条件下,着陆位置精度要达到10米级,这项任务的困难引起学者对自主制导方法的兴趣。本文讨论了动力下降阶段一般性的3自由度和6自由度优化问题,并对比月球、火星和地球3种典型着陆场景的特点。在此基础上,通过比较解析制导方法、数值优化算法和基于学习的方法,详细阐述自主制导方法的特点和适应性,并讨论非凸问题的凸化处理和求解策略。随后提出自主制导方法工程应用的3个关键问题:物理可行性、模型精度和实时性。最后,简要介绍各国航天组织(包括美国、中国、法国、德国和日本)研发的垂直起降验证飞行器,以及目前在验证飞行器上开展的制导方法试验工作。
This paper summarizes the autonomous guidance methods (AGMs) for pinpoint soft landing on celestial surfaces. We first review the development of powered descent guidance methods
focusing on their contributions for dealing with constraints and enhancing computational efficiency. With the increasing demand for reusable launchers and more scientific returns from space exploration
pinpoint soft landing has become a basic requirement. Unlike the kilometer-level precision for previous activities
the position accuracy of future planetary landers is within tens of meters of a target respecting all constraints of velocity and attitude
which is a very difficult task and arouses renewed interest in AGMs. This paper states the generalized three- and six-degree-of-freedom optimization problems in the powered descent phase and compares the features of three typical scenarios
i.e.
the lunar
Mars
and Earth landing. On this basis
the paper details the characteristics and adaptability of AGMs by comparing aspects of analytical guidance methods
numerical optimization algorithms
and learning-based methods
and discusses the convexification treatment and solution strategies for non-convex problems. Three key issues related to AGM application
including physical feasibility
model accuracy
and real-time performance
are presented afterward for discussion. Many space organizations
such as those in the United States
China
France
Germany
and Japan
have also developed free-flying demonstrators to carry out related research. The guidance methods which have been tested on these demonstrators are briefly introduced at the end of the paper.
自主制导方法定点软着陆动力下降非线性规划
Autonomous guidance methodPinpoint soft landingPowered descentNonlinear programming
B Açıkmeşe, , , L Blackmore. . Lossless convexification of a class of optimal control problems with non-convex control constraints. . Automatica, , 2011. . 47((2):):341--347. . DOI:10.1016/j.automatica.2010.10.037http://doi.org/10.1016/j.automatica.2010.10.037..
B Açıkmeşe, , , SR Ploen. . A powered descent guidance algorithm for Mars pinpoint landing. . AIAA Guidance, Navigation, and Control Conf and Exhibit, Article 6288. doi:10.2514/6.2005-6288, , 2005. . DOI:10.2514/6.2005-6288http://doi.org/10.2514/6.2005-6288..
B Açıkmeşe, , , SR Ploen. . Convex programming approach to powered descent guidance for Mars landing. . J Guid Contr Dynam, , 2007. . 30((5):):1353--1366. . DOI:10.2514/1.27553http://doi.org/10.2514/1.27553..
B Açıkmeşe, , , M Aung, , , J Casoliva, , , 等. . Flight testing of trajectories computed by G-FOLD: fuel optimal large divert guidance algorithm for planetary landing. . 23$^{\rm rd}$ AAS/AIAA Spaceflight Mechanics Meeting, Article 386, , 2013a. ..
B Açıkmeşe, , , JM Carson, , , L Blackmore. . Lossless convexification of nonconvex control bound and pointing constraints of the soft landing optimal control problem. . IEEE Trans Contr Syst Technol, , 2013b. . 21((6):):2104--2113. . DOI:10.1109/TCST.2012.2237346http://doi.org/10.1109/TCST.2012.2237346..
AK Akametalu, , , CJ Tomlin, , , M Chen. . Reachability-based forced landing system. . J Guid Contr Dynam, , 2018. . 41((12):):2529--2542. . DOI:10.2514/1.G003490http://doi.org/10.2514/1.G003490..
J Benito, , , KD Mease. . Reachable and controllable sets for planetary entry and landing. . J Guid Contr Dynam, , 2010. . 33((3):):641--654. . DOI:10.2514/1.47577http://doi.org/10.2514/1.47577..
LT Biegler, , , VM Zavala. . Large-scale nonlinear programming using IPOPT: an integrating framework for enterprise-wide dynamic optimization. . Comput Chem Eng, , 2009. . 33((3):):575--582. . DOI:10.1016/j.compchemeng.2008.08.006http://doi.org/10.1016/j.compchemeng.2008.08.006..
L Blackmore. . Autonomous precision landing of space rockets. . Bridge, , 2016. . 46((4):):15--20. . ..
L Blackmore, , , B Açıkmeşe, , , DP Scharf. . Minimum-landing-error powered-descent guidance for Mars landing using convex optimization. . J Guid Contr Dynam, , 2010. . 33((4):):1161--1171. . DOI:10.2514/1.47202http://doi.org/10.2514/1.47202..
L Blackmore, , , B Açıkmeşe, , , JMIII Carson. . Lossless convexification of control constraints for a class of nonlinear optimal control problems. . Syst Contr Lett, , 2012. . 61((8):):863--870. . DOI:10.1016/j.sysconle.2012.04.010http://doi.org/10.1016/j.sysconle.2012.04.010..
PT Boggs, , , JW Tolle. . Sequential quadratic programming. . Acta Numer, , 1995. . 4((4):):1--51. . DOI:10.1017/S0962492900002518http://doi.org/10.1017/S0962492900002518..
IM Bomze, , , VF Demyanov, , , R Fletcher, , , 等. . Nonlinear Optimization. . Springer, Berlin, Germany, , 2007. . DOI:10.1007/978-3-642-11339-0http://doi.org/10.1007/978-3-642-11339-0..
S Boyd, , , L Vandenberghe. . Convex Optimization, , ::New York, USACambridge University Press, , 2004. ..
S Boyd, , , N Parikh, , , E Chu, , , 等. . Distributed optimization and statistical learning via the alternating direction method of multipliers. . Found Trends Mach Learn, , 2011. . 3((1):):1--122. . DOI:10.1561/2200000016http://doi.org/10.1561/2200000016..
RP Brent. . Algorithms for Minimization without Derivatives, , ::New York, USACourier Corporation, , 2013. ..
J Casoliva. . Spacecraft Trajectory Generation by Successive Approximation for Powered Descent and Cyclers. . PhD Thesis, University of California, Irvine, USA, , 2013. ..
SZ Chen, , , LF Chu, , , XM Yang, , , 等. . Application of state prediction neural network control algorithm in small reusable rocket. . Acta Aeron Astron Sin, , 2019. . 40((3):):149--163. . ..
WF Chen, , , ZJ Shao, , , KX Wang, , , 等. . Convergence depth control for interior point methods. . AIChE J, , 2010. . 56((12):):3146--3161. . DOI:10.1002/aic.12225http://doi.org/10.1002/aic.12225..
A Domahidi, , , AU Zgraggen, , , MN Zeilinger, , , 等. . Efficient interior point methods for multistage problems arising in receding horizon control. . 51$^{\rm st}$ IEEE Conf on Decision and Control, , 2012. . p.668--674. . DOI:10.1109/CDC.2012.6426855http://doi.org/10.1109/CDC.2012.6426855..
A Domahidi, , , E Chu, , , S Boyd. . ECOS: an SOCP solver for embedded systems. . European Control Conf, , 2013. . p.3071--3076. . DOI:10.23919/ECC.2013.6669541http://doi.org/10.23919/ECC.2013.6669541..
D Dueri, , , Z Jing, , , B Açıkmeşe. . Automated custom code generation for embedded, real-time second order cone programming. . 19$^{\rm th}$ Int Federation of Automatic Control World Congress, , 2014. . p.1605--1612. . DOI:10.3182/20140824-6-ZA-1003.02736http://doi.org/10.3182/20140824-6-ZA-1003.02736..
D Dueri, , , B Açıkmeşe, , , DP Scharf, , , 等. . Customized real-time interior-point methods for onboard powered-descent guidance. . J Guid Contr Dynam, , 2017. . 40((2):):197--212. . DOI:10.2514/1.G001480http://doi.org/10.2514/1.G001480..
M Dumke, , , M Sagliano, , , P Saranrittichai, , , 等. . EAGLE - environment for autonomous GNC landing experiments. . 10$^{\rm th}$ Int ESA Conf on Guidance, Navigation and Control Systems, , 2017. . p.1--25. . ..
E Dumont, , , T Ecker, , , C Chavagnac, , , 等. . CALLISTO - reusable VTVL launcher first stage demonstrator. . Space Propulsion Conf, Article 406, , 2018. ..
B Ebrahimi, , , M Bahrami, , , J Roshanian. . Optimal sliding-mode guidance with terminal velocity constraint for fixed-interval propulsive maneuvers. . Acta Astron, , 2008. . 62((10-11):):556--562. . DOI:10.1016/j.actaastro.2008.02.002http://doi.org/10.1016/j.actaastro.2008.02.002..
U Eren, , , D Dueri, , , B Açıkmeşe. . Constrained reachability and controllability sets for planetary precision landing via convex optimization. . J Guid Contr Dynam, , 2015. . 38((11):):2067--2083. . DOI:10.2514/1.G000882http://doi.org/10.2514/1.G000882..
F Fahroo, , , IM Ross. . Pseudospectral methods for infinite-horizon nonlinear optimal control problems. . J Guid Contr Dynam, , 2008. . 31((4):):927--936. . DOI:10.2514/1.33117http://doi.org/10.2514/1.33117..
R Furfaro, , , R Linares. . Waypoint-based generalized ZEM/ZEV feedback guidance for planetary landing via a reinforcement learning approach. . 3$^{\rm rd}$ IAA Conf on Dynamics and Control of Space Systems, , 2017. . p.401--416. . ..
R Furfaro, , , S Selnick, , , ML Cupples, , , 等. . Nonlinear sliding guidance algorithms for precision lunar landing. . 21$^{\rm st}$ AAS/AIAA Space Flight Mechanics Meeting, , 2011. . p.945--964. . ..
CE García, , , DM Prett, , , M Morari. . Model predictive control: theory and practice—a survey. . Automatica, , 1989. . 25((3):):335--348. . DOI:10.1016/0005-1098(89)90002-2http://doi.org/10.1016/0005-1098(89)90002-2..
B Gaudet, , , R Linares, , , R Furfaro. . Integrated guidance and control for pinpoint Mars landing using reinforcement learning. . Adv Astron Sci, , 2018. . 1673135--3154. . ..
DT Ge, , , PY Cui, , , SY Zhu. . Recent development of autonomous GNC technologies for small celestial body descent and landing. . Progr Aerosp Sci, , 2019. . 110100551DOI:10.1016/j.paerosci.2019.06.002http://doi.org/10.1016/j.paerosci.2019.06.002..
PE Gill, , , W Murray, , , MA Saunders. . SNOPT: an SQP algorithm for large-scale constrained optimization. . SIAM Rev, , 2005. . 47((1):):99--131. . DOI:10.1137/S0036144504446096http://doi.org/10.1137/S0036144504446096..
P Giselsson, , , S Boyd. . Linear convergence and metric selection for Douglas-Rachford splitting and ADMM. . IEEE Trans Autom Contr, , 2017. . 62((2):):532--544. . DOI:10.1109/TAC.2016.2564160http://doi.org/10.1109/TAC.2016.2564160..
M Grant, , , S Boyd, , , Y Ye. . CVX: MATLAB Software for Disciplined Convex Programming. . 2008. . https://cvxr.com/cvx/https://cvxr.com/cvx/, , [Accessed on Mar. 1, 2020]..
YM Guo, , , M Hawkins, , , B Wie. . Waypoint-optimized zero-effort-miss/zero-effort-velocity feedback guidance for Mars landing. . J Guid Contr Dynam, , 2013. . 36((3):):799--809. . DOI:10.2514/1.58098http://doi.org/10.2514/1.58098..
MW Harris, , , B Açıkmeş. . Lossless convexification of non-convex optimal control problems for state constrained linear systems. . Automatica, , 2014. . 50((9):):2304--2311. . DOI:10.1016/j.automatica.2014.06.008http://doi.org/10.1016/j.automatica.2014.06.008..
J Jerez, , , S Merkli, , , S Bennani, , , 等. . Forces-RTTO: a tool for on-board real-time autonomous trajectory planning. . 10$^{\rm th}$ Int ESA Conf on Guidance, Navigation and Control Systems, , 2017. . p.1--22. . ..
XQ Jiang, , , R Furfaro, , , S Li. . Integrated guidance for Mars entry and powered descent using reinforcement learning and Gauss pseudospectral method. . 4$^{\rm th}$ IAA Conf on Dynamics and Control of Space Systems, , 2018. . p.761--774. . ..
L Jouffe. . Fuzzy inference system learning by reinforcement methods. . IEEE Trans Syst Man Cybern Part C Appl Rev, , 1998. . 28((3):):338--355. . DOI:10.1109/5326.704563http://doi.org/10.1109/5326.704563..
AR Klumpp. . Apollo lunar descent guidance. . Automatica, , 1974. . 10((2):):133--146. . DOI:10.1016/0005-1098(74)90019-3http://doi.org/10.1016/0005-1098(74)90019-3..
U Lee, , , M Mesbahi. . Optimal power descent guidance with 6-DoF line of sight constraints via unit dual quaternions. . AIAA Guidance, Navigation, and Control Conf, , 2015. . p.1--25. . ..
U Lee, , , M Mesbahi. . Constrained autonomous precision landing via dual quaternions and model predictive control. . J Guid Contr Dynam, , 2017. . 40((2):):292--308. . DOI:10.2514/1.G001879http://doi.org/10.2514/1.G001879..
XF Liu. . Fuel-optimal rocket landing with aerodynamic controls. . J Guid Contr Dynam, , 2019. . 42((1):):65--77. . DOI:10.2514/1.G003537http://doi.org/10.2514/1.G003537..
XF Liu, , , P Lu. . Solving nonconvex optimal control problems by convex optimization. . J Guid Contr Dynam, , 2014. . 37((3):):750--765. . DOI:10.2514/1.62110http://doi.org/10.2514/1.62110..
P Lu. . Introducing computational guidance and control. . J Guid Contr Dynam, , 2017. . 40((2):):193DOI:10.2514/1.G002745http://doi.org/10.2514/1.G002745..
P Lu. . Propellant-optimal powered descent guidance. . J Guid Contr Dynam, , 2018. . 41((4):):813--826. . DOI:10.2514/1.G003243http://doi.org/10.2514/1.G003243..
P Lu, , , XF Liu. . Autonomous trajectory planning for rendezvous and proximity operations by conic optimization. . J Guid Contr Dynam, , 2013. . 36((2):):375--389. . DOI:10.2514/1.58436http://doi.org/10.2514/1.58436..
DG Luenberger, , , YY Ye. . Linear and Nonlinear Programming. . New York, USA:Springer, , 1984. ..
L Ma, , , ZJ Shao, , , WF Chen, , , 等. . Trajectory optimization for lunar soft landing with a Hamiltonian-based adaptive mesh refinement strategy. . Adv Eng Softw, , 2016. . 100266--276. . DOI:10.1016/j.advengsoft.2016.08.002http://doi.org/10.1016/j.advengsoft.2016.08.002..
L Ma, , , KX Wang, , , ZJ Shao, , , 等. . Trajectory optimization for planetary multi-point powered landing. . IFAC-PapersOnLine, , 2017. . 50((1):):8291--8296. . DOI:10.1016/j.ifacol.2017.08.1404http://doi.org/10.1016/j.ifacol.2017.08.1404..
L Ma, , , KX Wang, , , ZH Xu, , , 等. . Trajectory optimization for lunar rover performing vertical takeoff vertical landing maneuvers in the presence of terrain. . Acta Astron, , 2018a. . 146289--299. . DOI:10.1016/j.actaastro.2018.03.013http://doi.org/10.1016/j.actaastro.2018.03.013..
L Ma, , , KX Wang, , , ZH Xu, , , 等. . Trajectory optimization for powered descent and landing of reusable rockets with restartable engines. . 69$^{\rm th}$ Int Astronautical Congress, Article 44 659, , 2018b. ..
L Ma, , , KX Wang, , , ZH Xu, , , 等. . Multi-point powered descent guidance based on optimal sensitivity. . Aerosp Sci Technol, , 2019. . 86465--477. . DOI:10.1016/j.ast.2019.01.028http://doi.org/10.1016/j.ast.2019.01.028..
D Malyuta, , , TP Reynolds, , , M Szmuk, , , 等. . Discretization performance and accuracy analysis for the rocket powered descent guidance problem. . AIAA Scitech 2019 Forum, Article 925, , 2019. . DOI:10.2514/6.2019-0925http://doi.org/10.2514/6.2019-0925..
YQ Mao, , , M Szmuk, , , B Açıkmeşe. . Successive convexification of non-convex optimal control problems and its convergence properties. . 55$^{\rm th}$ Conf on Decision and Control, , 2016. . p.3636--3641. . DOI:10.1109/CDC.2016.7798816http://doi.org/10.1109/CDC.2016.7798816..
YQ Mao, , , D Dueri, , , M Szmuk, , , 等. . Successive convexification of non-convex optimal control problems with state constraints. . IFAC-PapersOnLine, , 2017. . 50((1):):4063--4069. . DOI:10.1016/j.ifacol.2017.08.789http://doi.org/10.1016/j.ifacol.2017.08.789..
YQ Mao, , , M Szmuk, , , B Açıkmeşe. . Successive convexification: a superlinearly convergent algorithm for non-convex optimal control problems. . 2018. . https://arxiv.org/abs/1804.06539v1https://arxiv.org/abs/1804.06539v1, , ..
J Mattingley, , , S Boyd. . CVXGEN: a code generator for embedded convex optimization. . Opt Eng, , 2012. . 13((1):):1--27. . DOI:10.1007/s11081-011-9176-9http://doi.org/10.1007/s11081-011-9176-9..
DQ Mayne, , , JB Rawlings, , , CV Rao, , , 等. . Constrained model predictive control: stability and optimality. . Automatica, , 2000. . 36((6):):789--814. . DOI:10.1016/S0005-1098(99)00214-9http://doi.org/10.1016/S0005-1098(99)00214-9..
RL McHenry, , , AJ de Long, , , BF Cockrell, , , 等. . Space shuttle ascent guidance, navigation, and control. . J Astron Sci, , 1979. . 271--38. . ..
J Meditch. . On the problem of optimal thrust programming for a lunar soft landing. . IEEE Trans Autom Contr, , 1964. . 9((4):):477--484. . DOI:10.1109/TAC.1964.1105758http://doi.org/10.1109/TAC.1964.1105758..
D Monchaux, , , B Rmili, , , J Hassin, , , 等. . FROG, a rocket for GNC demonstrations. . 69$^{\rm th}$ Int Astronautical Congress, Article 43 308, , 2018. ..
F Najson, , , KD Mease. . Computationally inexpensive guidance algorithm for fuel-efficient terminal descent. . J Guid Contr Dynam, , 2006. . 29((4):):955--964. . DOI:10.2514/1.17715http://doi.org/10.2514/1.17715..
S Nonaka. . Flight demonstration by reusable rocket vehicle RV-X. . 28$^{\rm th}$ Workshop on JAXA Astrodynamics and Flight Mechanics, SA6000135029, , 2018. ..
CA Pascucci, , , S Bennani, , , A Bemporad. . Model predictive control for powered descent guidance and control. . European Control Conf, , 2015. . p.1388--1393. . ..
S Ploen, , , B Açıkmeşe, , , A Wolf. . A comparison of powered descent guidance laws for Mars pinpoint landing. . AIAA/AAS Astrodynamics Specialist Conf and Exhibit, Article 6676, , 2006. . DOI:10.2514/6.2006-6676http://doi.org/10.2514/6.2006-6676..
R Prakash, , , PD Burkhart, , , A Chen, , , 等. . Mars science laboratory entry, descent, and landing system overview. . IEEE Aerospace Conf, , 2008. . p.1--18. . DOI:10.1109/AERO.2008.4526283http://doi.org/10.1109/AERO.2008.4526283..
M Sagliano. . Pseudospectral convex optimization for powered descent and landing. . J Guid Contr Dynam, , 2018a. . 41((2):):320--334. . DOI:10.2514/1.G002818http://doi.org/10.2514/1.G002818..
M Sagliano. . Generalized hp pseudospectral convex programming for powered descent and landing. . AIAA Guidance, Navigation, and Control Conf, Article 1870, , 2018b. . DOI:10.2514/6.2018-1870http://doi.org/10.2514/6.2018-1870..
M Sagliano, , , E Mooij. . Optimal drag-energy entry guidance via pseudospectral convex optimization. . AIAA Guidance, Navigation, and Control Conf, Article 1315, , 2018. . DOI:10.2514/6.2018-1315http://doi.org/10.2514/6.2018-1315..
M Sagliano, , , M Dumke, , , S Theil. . Simulations and flight tests of a new nonlinear controller for the EAGLE lander. . J Spacecr Rock, , 2019a. . 56((1):):259--272. . DOI:10.2514/1.A34161http://doi.org/10.2514/1.A34161..
M Sagliano, , , T Tsukamoto, , , J Hernandez, , , 等. . Guidance and control strategy for the CALLISTO flight experiment. . 8$^{\rm th}$ EUCASS Conf for Aeronautics and Aerospace Sciences, Article 284, , 2019b. . DOI:10.13009/EUCASS2019-284http://doi.org/10.13009/EUCASS2019-284..
C Sánchez-Sánchez, , , D Izzo. . Real-time optimal control via deep neural networks: study on landing problems. . J Guid Contr Dynam, , 2018. . 41((5):):1122--1135. . DOI:10.2514/1.G002357http://doi.org/10.2514/1.G002357..
S Sato, , , T Tsukamoto, , , T Yamamoto, , , 等. . The study of navigation, guidance, and control system of reusable vehicle experiment (RV-X). . 28$^{\rm th}$ Workshop on JAXA Astrodynamics and Flight Mechanics, SA6000135030, , 2018. ..
DP Scharf, , , MW Regehr, , , GM Vaughan, , , 等. . ADAPT demonstrations of onboard large-divert guidance with a VTVL rocket. . IEEE Aerospace Conf, , 2014. . p.1--18. . DOI:10.1109/AERO.2014.6836462http://doi.org/10.1109/AERO.2014.6836462..
DP Scharf, , , B Açıkmeşe, , , D Dueri, , , 等. . Implementation and experimental demonstration of onboard powered-descent guidance. . J Guid Contr Dynam, , 2017. . 40((2):):213--229. . DOI:10.2514/1.G000399http://doi.org/10.2514/1.G000399..
J Schulman, , , F Wolski, , , P Dhariwal, , , 等. . Proximal policy optimization algorithms. . 2017. . https://arxiv.org/abs/1707.06347https://arxiv.org/abs/1707.06347, , ..
D Seelbinder. . On-board Trajectory Computation for Mars Atmospheric Entry based on Parametric Sensitivity Analysis of Optimal Control Problems. . PhD Thesis, Universität Bremen, Bremen, Germany, , 2017. ..
ZY Song, , , DJ Zhao, , , XG Lv. . Terminal attitude-constrained guidance and control for lunar soft landing. . Adv Astron Sci, , 2015. . 153137--147. . ..
R Sostaric, , , J Rea. . Powered descent guidance methods for the Moon and Mars. . AIAA Guidance, Navigation, and Control Conf and Exhibit, Article 6287, , 2005. . DOI:10.2514/6.2005-6287http://doi.org/10.2514/6.2005-6287..
B Stellato, , , G Banjac, , , P Goulart, , , 等. . OSQP: an operator splitting solver for quadratic programs. . 2018. . https://arxiv.org/abs/1711.08013v2https://arxiv.org/abs/1711.08013v2, , ..
M Szmuk, , , B Açıkmeşe. . Successive convexification for fuel-optimal powered landing with aerodynamic drag and non-convex constraints. . AIAA Guidance, Navigation, and Control Conf, Article 378, , 2016. . DOI:10.2514/6.2016-0378http://doi.org/10.2514/6.2016-0378..
M Szmuk, , , B Açıkmeşe. . Successive convexification for 6-DoF Mars rocket powered landing with free-final-time. . AIAA Guidance, Navigation, and Control Conf, Article 617, , 2018. . DOI:10.2514/6.2018-0617http://doi.org/10.2514/6.2018-0617..
M Szmuk, , , U Eren, , , B Açıkmeşe. . Successive convexification for Mars 6-DoF powered descent landing guidance. . AIAA Guidance, Navigation, and Control Conf, Article 1500, , 2017. . DOI:10.2514/6.2017-1500http://doi.org/10.2514/6.2017-1500..
M Szmuk, , , T Reynolds, , , B Açıkmeşe, , , 等. . Successive convexification for 6-DoF powered descent guidance with compound state-triggered constraints. . AIAA Scitech 2019 Forum, Article 926, , 2019. . DOI:10.2514/6.2019-0926http://doi.org/10.2514/6.2019-0926..
KC Toh, , , RH Tutuncu, , , MJ Todd. . On the implementation of SDPT3 (version 3.1) - a MATLAB software package for semidefinite-quadratic-linear programming. . IEEE Int Conf on Robotics and Automation, , 2004. . p.290--296. . DOI:10.1109/CACSD.2004.1393891http://doi.org/10.1109/CACSD.2004.1393891..
U Topcu, , , J Casoliva, , , KD Mease. . Fuel efficient powered descent guidance for Mars landing. . AIAA Guidance, Navigation, and Control Conf and Exhibit, Article 6286, , 2005. . DOI:10.2514/6.2005-6286http://doi.org/10.2514/6.2005-6286..
U Topcu, , , J Casoliva, , , KD Mease. . Minimum-fuel powered descent for Mars pinpoint landing. . J Spacecr Rock, , 2007. . 44((2):):324--331. . DOI:10.2514/1.25023http://doi.org/10.2514/1.25023..
P Tsiotras, , , M Mesbahi. . Toward an algorithmic control theory. . J Guid Contr Dynam, , 2017. . 40((2):):194--196. . DOI:10.2514/1.G002754http://doi.org/10.2514/1.G002754..
C Wang, , , ZY Song. . Convex model predictive control for rocket vertical landing. . 37$^{\rm th}$ Chinese Control Conf, , 2018a. . p.9837--9842. . DOI:10.23919/ChiCC.2018.8483147http://doi.org/10.23919/ChiCC.2018.8483147..
C Wang, , , ZY Song. . Rapid trajectory optimization for lunar soft landing with hazard avoidance. . Adv Astron Sci, , 2018b. . 161885--900. . ..
JB Wang, , , NG Cui. . A pseudospectral-convex optimization algorithm for rocket landing guidance. . AIAA Guidance, Navigation, and Control Conf, Article 1871, , 2018. . DOI:10.2514/6.2018-1871http://doi.org/10.2514/6.2018-1871..
KX Wang, , , ZJ Shao, , , ZJ Zhang, , , 等. . Convergence depth control for process system optimization. . Ind Eng Chem Res, , 2007. . 46((23):):7729--7738. . DOI:10.1021/ie070073shttp://doi.org/10.1021/ie070073s..
A Wenzel. . On-board Convex Optimization for Powered Descent Landing of EAGLE. . PhD Theis, Lulea University of Technology, Lulea, Sweden, , 2017. ..
A Wenzel, , , M Sagliano, , , D Seelbinder. . Performance analysis of real-time optimal guidance methods for vertical take-off, vertical landing vehicles. . 69$^{\rm th}$ Int Astronautical Congress, Article 44 498, , 2018. ..
SJ Wright. . Primal-Dual Interior-Point Methods. . Society for Industrial and Applied Mathematics, Philadelphia, USA, , 1997. ..
RQ Yang, , , XF Liu. . Comparison of convex optimization-based approaches to solve nonconvex optimal control problems. . AIAA Scitech 2019 Forum, Article 1666, , 2019. . DOI:10.2514/6.2019-1666http://doi.org/10.2514/6.2019-1666..
MN Zeilinger, , , DM Raimondo, , , A Domahidi, , , 等. . On real-time robust model predictive control. . Automatica, , 2014. . 50((3):):683--694. . DOI:10.1016/j.automatica.2013.11.019http://doi.org/10.1016/j.automatica.2013.11.019..
B Zhang, , , S Tang, , , BF Pan. . Multi-constrained suboptimal powered descent guidance for lunar pinpoint soft landing. . Aerosp Sci Technol, , 2016. . 48203--213. . DOI:10.1016/j.ast.2015.11.018http://doi.org/10.1016/j.ast.2015.11.018..
HH Zhang, , , YF Guan, , , XY Huang, , , 等. . Guidance navigation and control for Chang'E-3 powered descent. . Sci Sin Technol, , 2014a. . 44((4):):377--384. . DOI:10.1360/092014-43http://doi.org/10.1360/092014-43..
HH Zhang, , , J Liang, , , XY Huang, , , 等. . Autonomous hazard avoidance control for Chang'E-3 soft landing. . Sci Sin Technol, , 2014b. . 44((6):):559--568. . DOI:10.1360/092014-51http://doi.org/10.1360/092014-51..
Y Zhang, , , YN Guo, , , GF Ma, , , 等. . Collision avoidance ZEM/ZEV optimal feedback guidance for powered descent phase of landing on Mars. . Adv Space Res, , 2017. . 59((6):):1514--1525. . DOI:10.1016/j.asr.2016.12.040http://doi.org/10.1016/j.asr.2016.12.040..
DJ Zhao, , , ZY Song. . Reentry trajectory optimization with waypoint and no-fly zone constraints using multiphase convex programming. . Acta Astron, , 2017. . 13760--69. . DOI:10.1016/j.actaastro.2017.04.013http://doi.org/10.1016/j.actaastro.2017.04.013..
DJ Zhao, , , BY Jiang, , , XG Lv. . Terminal attitude-constrained optimal feedback guidance for pinpoint planetary landing. . Adv Astron Sci, , 2015. . 1531689--1696. . ..
LY Zhou, , , YQ Xia. . Improved ZEM/ZEV feedback guidance for Mars powered descent phase. . Adv Space Res, , 2014. . 54((11):):2446--2455. . DOI:10.1016/j.asr.2014.08.011http://doi.org/10.1016/j.asr.2014.08.011..
Publicity Resources
Related Articles
Related Author
Related Institution