

FOLLOWUS
College of Computer Science, Sichuan University, Chengdu 610065, China
School of Physics and Engineering Technology, Chengdu Normal University, Chengdu 611130, China
College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
Qiuyan HE, E-mail: heqiuyan789@163.com
Xiao YUAN, E-mail: yuanxiao@scu.edu.cn
Published:2021-06,
Received:23 February 2020,
Revised:08 May 2021,
Scan QR Code
YIFEI PU, BO YU, QIUYAN HE, et al. Fractional-order memristive neural synaptic weighting achieved by pulse-based fracmemristor bridge circuit. [J]. Frontiers of information technology & electronic engineering, 2021, 22(6): 862-876.
YIFEI PU, BO YU, QIUYAN HE, et al. Fractional-order memristive neural synaptic weighting achieved by pulse-based fracmemristor bridge circuit. [J]. Frontiers of information technology & electronic engineering, 2021, 22(6): 862-876. DOI: 10.1631/FITEE.2000085.
提出一种新颖的分数阶记忆性神经突触加权电路。与以往大多数整数阶神经突触加权电路不同,该分数阶记忆性神经突触加权电路具有许多重要优点。由于忆阻的概念已从经典的整数阶忆阻推广到分数阶忆阻(分忆抗),分忆抗能否实现分数阶记忆性突触成为一个具有挑战性的理论问题。本文研究利用脉冲分忆抗桥电路实现的分数阶记忆性神经突触加权电路的特点。首先,利用基于脉冲的分忆抗桥电路设计分数阶记忆性神经突触加权电路结构。其次,从数学上证明分数阶记忆性神经突触加权电路的分数阶学习能力。最后,通过实验研究分数阶记忆性神经突触加权电路的电特性。分数阶记忆性神经突触加权电路在解释学习和记忆基础的细胞机制方面具有很强的能力,优于传统的整数阶神经突触加权电路,是该电路的主要优势。
We propose a novel circuit for the fractional-order memristive neural synaptic weighting (FMNSW). The introduced circuit is different from the majority of the previous integer-order approaches and offers important advantages. Since the concept of memristor has been generalized from the classic integer-order memristor to the fractional-order memristor (fracmemristor)
a challenging theoretical problem would be whether the fracmemristor can be employed to implement the fractional-order memristive synapses or not. In this research
characteristics of the FMNSW
realized by a pulse-based fracmemristor bridge circuit
are investigated. First
the circuit configuration of the FMNSW is explained using a pulse-based fracmemristor bridge circuit. Second
the mathematical proof of the fractional-order learning capability of the FMNSW is analyzed. Finally
experimental work and analyses of the electrical characteristics of the FMNSW are presented. Strong ability of the FMNSW in explaining the cellular mechanisms that underlie learning and memory
which is superior to the traditional integer-order memristive neural synaptic weighting
is considered a major advantage for the proposed circuit.
分数阶微积分分忆抗分忆抗值分数阶忆阻分数阶记忆性突触
Fractional calculusFracmemristorFracmemristanceFractional-order memristorFractional-order memristive synapses
SP Adhikari, , , CJ Yang, , , H Kim, , , 等. . Memristor bridge synapse-based neural network and its learning. . IEEE Trans Neur Netw Learn Syst, , 2012. . 23((9):):1426--1435. . DOI:10.1109/TNNLS.2012.2204770http://doi.org/10.1109/TNNLS.2012.2204770..
SP Adhikari, , , H Kim, , , RK Budhathoki, , , 等. . Learning with memristor bridge synapse-based neural networks. . Proc $14^{\rm th}$ Int Workshop on Cellular Nanoscale Networks and Their Applications, , 2014. . p. 1--2. . DOI:10.1109/CNNA.2014.6888623http://doi.org/10.1109/CNNA.2014.6888623..
SP Adhikari, , , H Kim, , , RK Budhathoki, , , 等. . A circuit-based learning architecture for multilayer neural networks with memristor bridge synapses. . IEEE Trans Circ Syst I Regul Pap, , 2015. . 62((1):):215--223. . DOI:10.1109/TCSI.2014.2359717http://doi.org/10.1109/TCSI.2014.2359717..
R Battiti. . First- and second-order methods for learning: between steepest descent and Newton's method. . Neur Comput, , 1992. . 4((2):):141--166. . DOI:10.1162/neco.1992.4.2.141http://doi.org/10.1162/neco.1992.4.2.141..
GQ Bi, , , MM Poo. . Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. . J Neurosci, , 1998. . 18((24):):10464--10472. . DOI:10.1523/JNEUROSCI.18-24-10464.1998http://doi.org/10.1523/JNEUROSCI.18-24-10464.1998..
TVP Bliss, , , T Lømo. . Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. . J Physiol, , 1973. . 232((2):):331--356. . DOI:10.1113/jphysiol.1973.sp010273http://doi.org/10.1113/jphysiol.1973.sp010273..
TVP Bliss, , , GL Collingridge. . A synaptic model of memory: long-term potentiation in the hippocampus. . Nature, , 1993. . 361((6407):):31--39. . DOI:10.1038/361031a0http://doi.org/10.1038/361031a0..
SM Bohte, , , JN Kok, , , HL Poutré. . Error-backpropagation in temporally encoded networks of spiking neurons. . Neurocomputing, , 2002. . 48((1-4):):17--37. . DOI:10.1016/S0925-2312(01)00658-0http://doi.org/10.1016/S0925-2312(01)00658-0..
J Borghetti, , , GS Snider, , , PJ Kuekes, , , 等. . 'Memristive' switches enable 'stateful' logic operations via material implication. . Nature, , 2010. . 464((7290):):873--876. . DOI:10.1038/nature08940http://doi.org/10.1038/nature08940..
BD Brown, , , HC Card. . Stochastic neural computation. I. Computational elements. . IEEE Trans Comput, , 2001a. . 50((9):):891--905. . DOI:10.1109/12.954505http://doi.org/10.1109/12.954505..
BD Brown, , , HC Card. . Stochastic neural computation. Ⅱ. Soft competitive learning. . IEEE Trans Comput, , 2001b. . 50((9):):906--920. . DOI:10.1109/12.954506http://doi.org/10.1109/12.954506..
L Chua. . Memristor--the missing circuit element. . IEEE Trans Circ Theory, , 1971. . 18((5):):507--519. . DOI:10.1109/TCT.1971.1083337http://doi.org/10.1109/TCT.1971.1083337..
L Chua. . Introduction to Nonlinear Network Theory, Part 1, Foundations of Nonlinear Network Theory, , ::New York, USARobert E Krieger Publishing Company, , 1978a. ..
L Chua. . Introduction to Nonlinear Network Theory, Part 2, Resistive Nonlinear Networks, , ::New York, USARobert E Krieger Publishing Company, , 1978b. ..
L Chua. . Device modeling via nonlinear circuit elements. . IEEE Trans Circ Syst, , 1980a. . 27((11):):1014--1044. . DOI:10.1109/TCS.1980.1084742http://doi.org/10.1109/TCS.1980.1084742..
L Chua. . Dynamic nonlinear networks: state-of-the-art. . IEEE Trans Circ Syst, , 1980b. . 27((11):):1059--1087. . DOI:10.1109/TCS.1980.1084745http://doi.org/10.1109/TCS.1980.1084745..
L Chua. . Nonlinear circuit foundations for nanodevices. I. The four-element torus. . Proc IEEE, , 2003. . 91((11):):1830--1859. . DOI:10.1109/JPROC.2003.818319http://doi.org/10.1109/JPROC.2003.818319..
L Chua. . Resistance switching memories are memristors. . Appl Phys A, , 2011. . 102((4):):765--783. . DOI:10.1007/s00339-011-6264-9http://doi.org/10.1007/s00339-011-6264-9..
L Chua. . The fourth element. . Proc IEEE, , 2012. . 100((6):):1920--1927. . DOI:10.1109/JPROC.2012.2190814http://doi.org/10.1109/JPROC.2012.2190814..
L Chua. . Memristor, Hodgkin-Huxley, and edge of chaos. . Nanotechnology, , 2013. . 24((38):):383001DOI:10.1088/0957-4484/24/38/383001http://doi.org/10.1088/0957-4484/24/38/383001..
L Chua, , , SM Kang. . Memristive devices and systems. . Proc IEEE, , 1976. . 64((2):):209--223. . DOI:10.1109/PROC.1976.10092http://doi.org/10.1109/PROC.1976.10092..
SF Cooke, , , TVP Bliss. . Plasticity in the human central nervous system. . Brain, , 2006. . 129((7):):1659--1673. . DOI:10.1093/brain/awl082http://doi.org/10.1093/brain/awl082..
CT Fennell. . Habituation procedures. In: Hoff E (Ed. ), Research Methods in Child Language: a Practical Guide, , ::Malden, USABlackwell Publishing Ltd., , 2012. . p. 1--16. . DOI:10.1002/9781444344035.ch1http://doi.org/10.1002/9781444344035.ch1..
ME Fouda, , , AG Radwan. . On the fractional-order memristor model. . J Fract Calc Appl, , 2013. . 4((1):):1--7. . ..
ME Fouda, , , AG Radwan. . Fractional-order memristor response under DC and periodic signals. . Circ Syst Signal Process, , 2015. . 34((3):):961--970. . DOI:10.1007/s00034-014-9886-2http://doi.org/10.1007/s00034-014-9886-2..
TD Fu, , , XM Liu, , , HY Gao, , , 等. . Bioinspired bio-voltage memristors. . Nat Commun, , 2020. . 11((1):):1861DOI:10.1038/s41467-020-15759-yhttp://doi.org/10.1038/s41467-020-15759-y..
DO Hebb. . The Organization of Behavior, , ::New York, USAWiley & Sons, , 1949. ..
JJ Hopfield. . Neural networks and physical systems with emergent collective computational abilities. . PNAS, , 1982. . 79((8):):2554--2558. . DOI:10.1073/pnas.79.8.2554http://doi.org/10.1073/pnas.79.8.2554..
JR Hughes. . Post-tetanic potentiation. . Physiol Rev, , 1958. . 38((1):):91--113. . DOI:10.1152/physrev.1958.38.1.91http://doi.org/10.1152/physrev.1958.38.1.91..
R Iyer, , , V Menon, , , M Buice, , , 等. . The influence of synaptic weight distribution on neuronal population dynamics. . PLoS Comput Biol, , 2013. . 9((10):):e1003248DOI:10.1371/journal.pcbi.1003248http://doi.org/10.1371/journal.pcbi.1003248..
SH Jo, , , T Chang, , , I Ebong, , , 等. . Nanoscale memristor device as synapse in neuromorphic systems. . Nano Lett, , 2010. . 10((4):):1297--1301. . DOI:10.1021/nl904092hhttp://doi.org/10.1021/nl904092h..
ER Kandel. . In Search of Memory: the Emergence of a New Science of Mind, , ::New York, USAW. W. Norton & Company,, , 2007. ..
H Kim, , , H Son, , , T Roska, , , 等. . High-performance Viterbi decoder with circularly connected 2-D CNN unilateral cell array. . IEEE Trans Circ Syst I Regul Pap, , 2005. . 52((10):):2208--2218. . DOI:10.1109/TCSI.2005.853263http://doi.org/10.1109/TCSI.2005.853263..
H Kim, , , MP Sah, , , CJ Yang, , , 等. . Memristor bridge synapses. . Proc IEEE, , 2012. . 100((6):):2061--2070. . DOI:10.1109/JPROC.2011.2166749http://doi.org/10.1109/JPROC.2011.2166749..
RC Koeller. . Applications of fractional calculus to the theory of viscoelasticity. . J Appl Mech, , 1984. . 51((2):):299--307. . DOI:10.1115/1.3167616http://doi.org/10.1115/1.3167616..
A Krishnaprasad, , , N Choudhary, , , S Das, , , 等. . Electronic synapses with near-linear weight update using MoS$_2$/graphene memristors. . Appl Phys Lett, , 2019. . 115((10):):103104DOI:10.1063/1.5108899http://doi.org/10.1063/1.5108899..
CB Li, , , CD Li, , , TW Huang, , , 等. . Synaptic memcapacitor bridge synapses. . Neurocomputing, , 2013. . 122370--374. . DOI:10.1016/j.neucom.2013.05.036http://doi.org/10.1016/j.neucom.2013.05.036..
JC Magee, , , D Johnston. . A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. . Science, , 1997. . 275((5297):):209--213. . DOI:10.1126/science.275.5297.209http://doi.org/10.1126/science.275.5297.209..
H Markram, , , J Lübke, , , M Frotscher, , , 等. . Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. . Science, , 1997. . 275((5297):):213--215. . DOI:10.1126/science.275.5297.213http://doi.org/10.1126/science.275.5297.213..
PV Massey, , , ZI Bashir. . Long-term depression: multiple forms and implications for brain function. . Trends Neurosci, , 2007. . 30((4):):176--184. . DOI:10.1016/j.tins.2007.02.005http://doi.org/10.1016/j.tins.2007.02.005..
E Oja. . Simplified neuron model as a principal component analyzer. . J Math Biol, , 1982. . 15((3):):267--273. . DOI:10.1007/BF00275687http://doi.org/10.1007/BF00275687..
KB Oldham, , , J Spanier. . The Fractional Calculus: Integrations and Differentiations of Arbitrary Order, , ::New York, USAAcademic Press, , 1974. ..
N Özdemir, , , D Karadeniz. . Fractional diffusion-wave problem in cylindrical coordinates. . Phys Lett A, , 2008. . 372((38):):5968--5972. . DOI:10.1016/j.physleta.2008.07.054http://doi.org/10.1016/j.physleta.2008.07.054..
LQ Pan, , , XX Zeng, , , XY Zhang, , , 等. . Spiking neural P systems with weighted synapses. . Neur Process Lett, , 2012. . 35((1):):13--27. . DOI:10.1007/s11063-011-9201-1http://doi.org/10.1007/s11063-011-9201-1..
I Podlubny. . Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, , ::New York, USAcademic Press, , 1998. ..
I Podlubny, , , I Petráš, , , BM Vinagre, , , 等. . Analogue realizations of fractional-order controllers. . Nonl Dynam, , 2002. . 29((1-4):):281--296. . DOI:10.1023/A:1016556604320http://doi.org/10.1023/A:1016556604320..
MJD Powell. . Restart procedures for the conjugate gradient method. . Math Programm, , 1977. . 12((1):):241--254. . DOI:10.1007/BF01593790http://doi.org/10.1007/BF01593790..
T Prodromakis, , , C Toumazou, , , L Chua. . Two centuries of memristors. . Nat Mater, , 2012. . 11((6):):478--481. . DOI:10.1038/nmat3338http://doi.org/10.1038/nmat3338..
YF Pu. . Measurement units and physical dimensions of fractance-part Ⅰ: position of purely ideal fractor in Chua's axiomatic circuit element system and fractional-order reactance of fractor in its natural implementation. . IEEE Access, , 2016a. . 43379--3397. . DOI:10.1109/ACCESS.2016.2585818http://doi.org/10.1109/ACCESS.2016.2585818..
YF Pu. . Measurement units and physical dimensions of fractance-part Ⅱ: fractional-order measurement units and physical dimensions of fractance and rules for fractors in series and parallel. . IEEE Access, , 2016b. . 43398--3416. . DOI:10.1109/ACCESS.2016.2585819http://doi.org/10.1109/ACCESS.2016.2585819..
YF Pu. . Analog circuit realization of arbitrary-order fractional Hopfield neural networks: a novel application of fractor to defense against chip cloning attacks. . IEEE Access, , 2016c. . 45417--5435. . DOI:10.1109/ACCESS.2016.2606160http://doi.org/10.1109/ACCESS.2016.2606160..
YF Pu, , , X Yuan. . Fracmemristor: fractional-order memristor. . IEEE Access, , 2016. . 41872--1888. . DOI:10.1109/ACCESS.2016.2557818http://doi.org/10.1109/ACCESS.2016.2557818..
YF Pu, , , Z Yi, , , JL Zhou. . Defense against chip cloning attacks based on fractional Hopfield neural networks. . Int J Neur Syst, , 2017a. . 27((4):):1750003DOI:10.1142/S0129065717500034http://doi.org/10.1142/S0129065717500034..
YF Pu, , , Z Yi, , , JL Zhou. . Fractional Hopfield neural networks: fractional dynamic associative recurrent neural networks. . IEEE Trans Neur Netw Learn Syst, , 2017b. . 28((10):):2319--2333. . DOI:10.1109/TNNLS.2016.2582512http://doi.org/10.1109/TNNLS.2016.2582512..
YF Pu, , , X Yuan, , , B Yu. . Analog circuit implementation of fractional-order memristor: arbitrary-order lattice scaling fracmemristor. . IEEE Trans Circ Syst I Regul Pap, , 2018a. . 65((9):):2903--2916. . DOI:10.1109/TCSI.2018.2789907http://doi.org/10.1109/TCSI.2018.2789907..
YF Pu, , , P Siarry, , , A Chatterjee, , , 等. . A fractional-order variational framework for retinex: fractional-order partial differential equation-based formulation for multi-scale nonlocal contrast enhancement with texture preserving. . IEEE Trans Image Process, , 2018b. . 27((3):):1214--1229. . DOI:10.1109/TIP.2017.2779601http://doi.org/10.1109/TIP.2017.2779601..
YA Rossikhin, , , MV Shitikova. . Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. . Appl Mech Rev, , 1997. . 50((1):):15--67. . DOI:10.1115/1.3101682http://doi.org/10.1115/1.3101682..
MP Sah, , , CJ Yang, , , H Kim, , , 等. . A voltage mode memristor bridge synaptic circuit with memristor emulators. . Sensors, , 2012. . 12((3):):3587--3604. . DOI:10.3390/s120303587http://doi.org/10.3390/s120303587..
SJ Shettleworth. . Cognition, Evolution, and Behavior ($2^{\rm nd}$ Ed. ), , ::New York, USAOxford University Press, , 2009. ..
M Shi, , , SL Hu. . Pinched hysteresis loop characteristics of a fractional-order HP TiO$_2$ memristor. . Proc Intelligent Computing, Networked Control, and Their Engineering Applications, , 2017. . p.705--713. . DOI:10.1007/978-981-10-6373-2_70http://doi.org/10.1007/978-981-10-6373-2_70..
GS Snider. . Self-organized computation with unreliable, memristive nanodevices. . Nanotechnology, , 2007. . 18((36):):365202DOI:10.1088/0957-4484/18/36/365202http://doi.org/10.1088/0957-4484/18/36/365202..
LR Squire, , , ER Kandel. . Memory: from Mind to Molecules, , ::London, UKMacmillan, , 2003. . p. 69..
DB Strukov, , , GS Snider, , , DR Stewart, , , 等. . The missing memristor found. . Nature, , 2008. . 453((7191):):80--83. . DOI:10.1038/nature06932http://doi.org/10.1038/nature06932..
LD Wang, , , XD Wang, , , SK Duan, , , 等. . A spintronic memristor bridge synapse circuit and the application in memrisitive cellular automata. . Neurocomputing, , 2015. . 167346--351. . ..
QX Wu, , , TM McGinnity, , , LP Maguire, , , 等. . Learning under weight constraints in networks of temporal encoding spiking neurons. . Neurocomputing, , 2006. . 69((16-18):):1912--1922. . DOI:10.1016/j.neucom.2005.11.023http://doi.org/10.1016/j.neucom.2005.11.023..
CJ Yang, , , SP Adhikari, , , H Kim. . Excitatory and inhibitory actions of a memristor bridge synapse. . Sci China Inform Sci, , 2018. . 61((6):):060427DOI:10.1007/s11432-017-9348-3http://doi.org/10.1007/s11432-017-9348-3..
YJ Yu, , , ZH Wang. . A fractional-order memristor model and the fingerprint of the simple series circuits including a fractional-order memristor. . Acta Phys Sin, , 2015. . 64((23):):238401DOI:10.7498/aps.64.238401http://doi.org/10.7498/aps.64.238401..
YJ Yu, , , BC Bao, , , HY Kang, , , 等. . Calculating area of fractional-order memristor pinched hysteresis loop. . J Eng, , 2015. . 2015((11):):325--327. . DOI:10.1049/joe.2015.0154http://doi.org/10.1049/joe.2015.0154..
CX Zhang, , , Y Chen, , , MD Yi, , , 等. . Recent progress in memristors for stimulating synaptic plasticity. . Sci Sin Inform, , 2018. . 48((2):):115--142. . DOI:10.1360/N112017-00022http://doi.org/10.1360/N112017-00022..
P Zhang, , , M Xia, , , FW Zhuge, , , 等. . Nanochannel-based transport in an interfacial memristor can emulate the analog weight modulation of synapses. . Nano Lett, , 2019. . 19((7):):4279--4286. . DOI:10.1021/acs.nanolett.9b00525http://doi.org/10.1021/acs.nanolett.9b00525..
L Zhou, , , SW Yang, , , GQ Ding, , , 等. . Tunable synaptic behavior realized in C$_3$N composite based memristor. . Nano Energy, , 2019. . 58293--303. . DOI:10.1016/j.nanoen.2019.01.045http://doi.org/10.1016/j.nanoen.2019.01.045..
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621