FOLLOWUS
MOE Key Laboratory of Universal Wireless Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
[ "Zhao YI, E-mail: yz17tx@bupt.edu.cn" ]
Weixia ZOU, E-mail: zwx0218@bupt.edu.cn
Published:2021-06,
Received:30 September 2020,
Revised:01 March 2021,
Scan QR Code
ZHAO YI, WEIXIA ZOU, XUEBIN SUN. Prior information based channel estimation for millimeter-wave massive MIMO vehicular communications in 5G and beyond. [J]. Frontiers of information technology & electronic engineering, 2021, 22(6): 777-789.
ZHAO YI, WEIXIA ZOU, XUEBIN SUN. Prior information based channel estimation for millimeter-wave massive MIMO vehicular communications in 5G and beyond. [J]. Frontiers of information technology & electronic engineering, 2021, 22(6): 777-789. DOI: 10.1631/FITEE.2000515.
毫米波(mmWave)被认为是5G及后5G高带宽车载通信的可行解决方案。为实现在未来车辆通信中的应用,鲁棒的毫米波车载网络非常重要。然而,一个挑战是,毫米波应在车辆或车辆到基础设施(V2I)之间提供高速和超高速数据交换。此外,由于车辆的高速移动引起毫米波信道快速变化,传统的实时信道估计方案难以实现。针对这些问题,提出一种毫米波V2I车辆通信信道估计方法。首先考虑快速运动的车辆场景,建立相应的快速时变信道数学模型。然后,利用基站与每个移动用户之间的时间变化规律和确定的到达方向,预测时变信道先验信息(PI)。最后,利用PI和信道特性对时变信道进行估计。仿真结果表明,在毫米波时变车载通信系统中,该方案在归一化均方误差和和率性能上均优于传统方案。
Millimeter wave (mmWave) has been claimed as the viable solution for high-bandwidth vehicular communications in 5G and beyond. To realize applications in future vehicular communications
it is important to take a robust mmWave vehicular network into consideration. However
one challenge in such a network is that mmWave should provide an ultra-fast and high-rate data exchange among vehicles or vehicle-to-infrastructure (V2I). Moreover
traditional real-time channel estimation strategies are unavailable because vehicle mobility leads to a fast variation mmWave channel. To overcome these issues
a channel estimation approach for mmWave V2I communications is proposed in this paper. Specifically
by considering a fast-moving vehicle secnario
a corresponding mathematical model for a fast time-varying channel is first established. Then
the temporal variation rule between the base station and each mobile user and the determined direction-of-arrival are used to predict the time-varying channel prior information (PI). Finally
by exploiting the PI and the characteristics of the channel
the time-varying channel is estimated. The simulation results show that the scheme in this paper outperforms traditional ones in both normalized mean square error and sum-rate performance in the mmWave time-varying vehicular system.
大规模多入多出毫米波信道估计车辆通信时变
Massive multiple-input multiple-outputMillimeter waveChannel estimationVehicular communicationTime-varying
MM Awad, , , KG Seddik, , , A Elezabi. . Channel estimation and tracking algorithms for harsh vehicle to vehicle environments. . Proc IEEE 82$.{\rm{nd}}$ Vehicular Technol Conf, , 2015. . p. 1--5. . DOI:10.1109/VTCFall.2015.7390864http://doi.org/10.1109/VTCFall.2015.7390864..
A Bourdoux, , , H Cappelle, , , A Dejonghe. . Channel tracking for fast time-variant channels in IEEE802. . 11p systems. Proc IEEE Global Telecommunications Conf, , 2011. . p. 1--6. . DOI:10.1109/GLOCOM.2011.6134024http://doi.org/10.1109/GLOCOM.2011.6134024..
J Brady, , , N Behdad, , , AM Sayeed. . Beamspace MIMO for millimeter-wave communications: system architecture, modeling, analysis, and measurements. . IEEE Trans Antenn Propag, , 2013. . 61((7):):3814--3827. . DOI:10.1109/TAP.2013.2254442http://doi.org/10.1109/TAP.2013.2254442..
A Brighente, , , M Cerutti, , , M Nicoli, , , 等. . Estimation of wideband dynamic mmWave and THz channels for 5G systems and beyond. . IEEE J Sel Areas Commun, , 2020. . 38((9):):2026--2040. . DOI:10.1109/JSAC.2020.3000889http://doi.org/10.1109/JSAC.2020.3000889..
J Choi, , , V Va, , , N Gonzalez-Prelcic, , , 等. . Millimeter-wave vehicular communication to support massive automotive sensing. . IEEE Commun Mag, , 2016. . 54((12):):160--167. . DOI:10.1109/MCOM.2016.1600071CMhttp://doi.org/10.1109/MCOM.2016.1600071CM..
JA Fernandez, , , D Stancil, , , F Bai. . Dynamic channel equalization for IEEE 802. . 11p waveforms in the vehicle-to-vehicle channel. Proc 48$. {\rm{th}}$ Annual Allerton Conf on Communication, Control, and Computing, , 2010. . p. 542--551. . DOI:10.1109/ALLERTON.2010.5706954http://doi.org/10.1109/ALLERTON.2010.5706954..
XY Gao, , , LL Dai, , , Y Zhang, , , 等. . Fast channel tracking for terahertz beamspace massive MIMO systems. . IEEE Trans Veh Technol, , 2017a. . 66((7):):5689--5696. . DOI:10.1109/TVT.2016.2614994http://doi.org/10.1109/TVT.2016.2614994..
XY Gao, , , LL Dai, , , SF Han, , , 等. . Reliable beamspace channel estimation for millimeter-wave massive MIMO systems with lens antenna array. . IEEE Trans Wirel Commun, , 2017b. . 16((9):):6010--6021. . DOI:10.1109/TWC.2017.2718502http://doi.org/10.1109/TWC.2017.2718502..
N Garcia, , , H Wymeersch, , , EG Strm, , , 等. . Location-aided mm-Wave channel estimation for vehicular communication. . Proc IEEE 17$. {\rm{th}}$ Int Workshop on Signal Processing Advances in Wireless Communications, , 2016. . p. 1--5. . DOI:10.1109/SPAWC.2016.7536855http://doi.org/10.1109/SPAWC.2016.7536855..
YJ Gu, , , A Leshem. . Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation. . IEEE Trans Signal Process, , 2012. . 60((7):):3881--3885. . DOI:10.1109/TSP.2012.2194289http://doi.org/10.1109/TSP.2012.2194289..
YJ Gu, , , NA Goodman, , , SH Hong, , , 等. . Robust adaptive beamforming based on interference covariance matrix sparse reconstruction. . Signal Process, , 2014. . 96375--381. . DOI:10.1016/j.sigpro.2013.10.009http://doi.org/10.1016/j.sigpro.2013.10.009..
RW Heath, , , N Gonzlez-Prelcic, , , S Rangan, , , 等. . An overview of signal processing techniques for millimeter wave MIMO systems. . IEEE J Sel Top Signal Process, , 2016. . 10((3):):436--453. . DOI:10.1109/JSTSP.2016.2523924http://doi.org/10.1109/JSTSP.2016.2523924..
N Kabaoglu. . Target tracking using particle filters with support vector regression. . IEEE Trans Veh Technol, , 2009. . 58((5):):2569--2573. . DOI:10.1109/TVT.2008.2005723http://doi.org/10.1109/TVT.2008.2005723..
LH Kong, , , MK Khan, , , F Wu, , , 等. . Millimeter-wave wireless communications for IoT-cloud supported autonomous vehicles: overview, design, and challenges. . IEEE Commun Mag, , 2017. . 55((1):):62--68. . DOI:10.1109/MCOM.2017.1600422CMhttp://doi.org/10.1109/MCOM.2017.1600422CM..
X Ma, , , F Yang, , , SC Liu, , , 等. . Sparse channel estimation for MIMO-OFDM systems in high-mobility situations. . IEEE Trans Veh Technol, , 2018. . 67((7):):6113--6124. . DOI:10.1109/TVT.2018.2811368http://doi.org/10.1109/TVT.2018.2811368..
M Mehrabi, , , M Mohammadkarimi, , , M Ardakani, , , 等. . A deep learning based channel estimation for high mobility vehicular communications. . Proc Int Conf on Computing, Networking and Communications, , 2020. . p. 338--342. . DOI:10.1109/ICNC47757.2020.9049735http://doi.org/10.1109/ICNC47757.2020.9049735..
J Palacios, , , D De Donno, , , J Widmer. . Tracking mm-Wave channel dynamics: fast beam training strategies under mobility. . Proc IEEE Conf on Computer Communications, , 2017. . p. 1--9. . DOI:10.1109/INFOCOM.2017.8056991http://doi.org/10.1109/INFOCOM.2017.8056991..
TS Rappaport, , , YC Xing, , , GR MacCartney, , , 等. . Overview of millimeter wave communications for fifth-generation (5G) wireless networks——with a focus on propagation models. . IEEE Trans Antenn Propag, , 2017. . 65((12):):6213--6230. . DOI:10.1109/TAP.2017.2734243http://doi.org/10.1109/TAP.2017.2734243..
A Sayeed, , , J Brady. . Beamspace MIMO for high-dimensional multiuser communication at millimeter-wave frequencies. . Proc IEEE Global Communications Conf, , 2013. . p. 3679--3684. . DOI:10.1109/GLOCOM.2013.6831645http://doi.org/10.1109/GLOCOM.2013.6831645..
S Shaham, , , M Ding, , , M Kokshoorn. . Fast channel estimation and beam tracking for millimeter wave vehicular communications, , https://arxiv.org/abs/1806.00161https://arxiv.org/abs/1806.00161, , ..
WQ Shen, , , LL Dai, , , JP An, , , 等. . Channel estimation for orthogonal time frequency space (OTFS) massive MIMO. . IEEE Trans Signal Process, , 2019. . 67((16):):4204--4217. . DOI:10.1109/TSP.2019.2919411http://doi.org/10.1109/TSP.2019.2919411..
XH Wu, , , WP Zhu, , , J Yan. . Channel estimation and tracking with nested sampling for fast-moving users in millimeter-wave communication. . Digit Signal Process, , 2019. . 9429--37. . DOI:10.1016/j.dsp.2019.05.009http://doi.org/10.1016/j.dsp.2019.05.009..
C Zhang, , , DN Guo, , , PY Fan. . Tracking angles of departure and arrival in a mobile millimeter wave channel. . Proc IEEE Int Conf on Communications, , 2016. . 1--6. . DOI:10.1109/ICC.2016.7510902http://doi.org/10.1109/ICC.2016.7510902..
YF Zhou, , , PC Yip, , , H Leung. . Tracking the direction-of-arrival of multiple moving targets by passive arrays: algorithm. . IEEE Trans Signal Process, , 1999. . 47((10):):2655--2666. . DOI:10.1109/78.790648http://doi.org/10.1109/78.790648..
Publicity Resources
Related Articles
Related Author
Related Institution