FOLLOWUS
College of Computer Science and Technology, Zhejiang University, Hangzhou310027, China
‡Corresponding author
E-mail: yzhuang@zju.edu.cn
E-mail: panyh@zju.edu.cn
Published:0 December 2021,
Received:30 September 2021,
Revised:22 November 2021,
Accepted:2021-10-07
Scan QR Code
YI YANG, YUETING ZHUANG, YUNHE PAN. Multiple knowledge representation for big data artificial intelligence: framework, applications, and case studies. [J]. Frontiers of information technology & electronic engineering, 2021, 22(12): 1551-1558.
YI YANG, YUETING ZHUANG, YUNHE PAN. Multiple knowledge representation for big data artificial intelligence: framework, applications, and case studies. [J]. Frontiers of information technology & electronic engineering, 2021, 22(12): 1551-1558. DOI: 10.1631/FITEE.2100463.
In this paper
we present a multiple knowledge representation (MKR) framework and discuss its potential for developing big data artificial intelligence (AI) techniques with possible broader impacts across different AI areas. Typically
canonical knowledge representations and modern representations each emphasize a particular aspect of transforming inputs into symbolic encoding or vectors. For example
knowledge graphs focus on depicting semantic connections among concepts
whereas deep neural networks (DNNs) are more of a tool to perceive raw signal inputs. MKR is an advanced AI representation framework for more complete intelligent functions
such as raw signal perception
feature extraction and vectorization
knowledge symbolization
and logical reasoning. MKR has two benefits: (1) it makes the current AI techniques (dominated by deep learning) more explainable and generalizable
and (2) it expands current AI techniques by integrating MKR to facilitate the mutual benefits of the complementary capacity of each representation
e.g.
raw signal perception and symbolic encoding. We expect that MKR research and its applications will drive the evolution of AI 2.0 and beyond.
D Amodei, , C Olah, , J Steinhardt, , et al., . 2016. . Concrete problems in AI safety. . arxiv.org/abs/1606.06565v2, .
AB Arrieta, , N díaz-Rodríguez, , J Del Ser, , et al., . 2020. . Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. . Inform Fus, , 58:82--115. . doi: 10.1016/j.inffus.2019.12.012http://doi.org/10.1016/j.inffus.2019.12.012.
S Auer, , C Bizer, , G Kobilarov, , et al., . 2007. . DBpedia: a nucleus for a web of open data. . Proc 6th Int Semantic Web Conf and 2nd Asian Semantic Web Conf the Semantic Web, p., 722--735. . doi: 10.1007/978-3-540-76298-0_52http://doi.org/10.1007/978-3-540-76298-0_52.
CR de Souza, , A Gaidon, , Y Cabon, , et al., . 2017. . Procedural generation of videos to train deep action recognition networks. . IEEE Conf on Computer Vision and Pattern Recognition, p., 2594--2604. . doi: 10.1109/CVPR.2017.278http://doi.org/10.1109/CVPR.2017.278.
HH Fan, , LC Zhu, , Y Yang, , et al., . 2020. . Recurrent attention network with reinforced generator for visual dialog. . ACM Trans Multim Comput Commun Appl, , 16((3):):78. doi: 10.1145/3390891http://doi.org/10.1145/3390891.
S Ferrada, , B Bustos, , A Hogan, . 2017. . IMGpedia: a linked dataset with content-based analysis of Wikimedia images. . Proc 16th Int Semantic Web Conf on the Semantic Web, p., 84--93. . doi: 10.1007/978-3-319-68204-4_8http://doi.org/10.1007/978-3-319-68204-4_8.
MVM França, , G Zaverucha, , AS d'Avila Garcez, . 2014. . Fast relational learning using bottom clause propositionalization with artificial neural networks. . Mach Learn, , 94((1):):81--104. . doi: 10.1007/s10994-013-5392-1http://doi.org/10.1007/s10994-013-5392-1.
A Gogoglou, , CB Bruss, , KE Hines, . 2019. . On the interpretability and evaluation of graph representation learning. . arxiv.org/abs/1910.03081, .
IJ Goodfellow, , J Pouget-Abadie, , M Mirza, , et al., . 2014. . Generative adversarial nets. . Proc 27th Int Conf on Neural Information Processing Systems, p., 2672--2680. ..
KM He, , XY Zhang, , SQ Ren, , et al., . 2016. . Deep residual learning for image recognition. . IEEE Conf on Computer Vision and Pattern Recognition, p., 770--778. . doi: 10.1109/CVPR.2016.90http://doi.org/10.1109/CVPR.2016.90.
KM He, , HQ Fan, , YX Wu, , et al., . 2020. . Momentum contrast for unsupervised visual representation learning. . IEEE/CVF Conf on Computer Vision and Pattern Recognition, p., 9726--9735. . doi: 10.1109/CVPR42600.2020.00975http://doi.org/10.1109/CVPR42600.2020.00975.
J Johnson, , A Gupta, , FF Li, . 2018. . Image generation from scene graphs. . IEEE/CVF Conf on Computer Vision and Pattern Recognition, p., 1219--1228. . doi: 10.1109/CVPR.2018.00133http://doi.org/10.1109/CVPR.2018.00133.
A Krizhevsky, , I Sutskever, , GE Hinton, . 2012. . ImageNet classification with deep convolutional neural networks. . Proc 25th Int Conf on Neural Information Processing Systems, p., 1097--1105. ..
JX Miao, , Y Wu, , Y Yang, . 2021. . Identifying visible parts via pose estimation for occluded person re-identification. . IEEE Trans Neur Netw Learn Syst, , early access. doi: 10.1109/TNNLS.2021.3059515http://doi.org/10.1109/TNNLS.2021.3059515.
YH Pan, . 2019. . On visual knowledge. . Front Inform Technol Electron Eng, , 20((8):):1021--1025. . doi: 10.1631/FITEE.1910001http://doi.org/10.1631/FITEE.1910001.
YH Pan, . 2020a. . Miniaturized five fundamental issues about visual knowledge. . Front Inform Technol Electron Eng, , early access. doi: 10.1631/FITEE.2040000http://doi.org/10.1631/FITEE.2040000.
YH Pan, . 2020b. . Multiple knowledge representation of artificial intelligence. . Engineering, , 6((3):):216--217. . doi: 10.1016/j.eng.2019.12.011http://doi.org/10.1016/j.eng.2019.12.011.
YH Pan, . 2021. . On visual understanding. . Front Inform Technol Electron Eng, , early access. doi: 10.1631/FITEE.2130000http://doi.org/10.1631/FITEE.2130000.
L Serafini, , A d'Avila Garcez, . 2016. . Logic tensor networks: deep learning and logical reasoning from data and knowledge. . Proc 11th Int Workshop on Neural-Symbolic Learning and Reasoning Co-located with the Joint Multi-conf on Human-Level Artificial Intelligence, ..
K Simonyan, , A Zisserman, . 2014. . Two-stream convolutional networks for action recognition in videos. . Proc 27th Int Conf on Neural Information Processing Systems, p., 568--576. ..
J Singh, , L Zheng, . 2020. . Combining semantic guidance and deep reinforcement learning for generating human level paintings. . arxiv.org/abs/2011.12589, .
YF Sun, , CM Cheng, , YH Zhang, , et al., . 2020. . Circle loss: a unified perspective of pair similarity optimization. . IEEE/CVF Conf on Computer Vision and Pattern Recognition, p., 6397--6406. . doi: 10.1109/CVPR42600.2020.00643http://doi.org/10.1109/CVPR42600.2020.00643.
KH Tang, , YL Niu, , JQ Huang, , et al., . 2020. . Unbiased scene graph generation from biased training. . IEEE/CVF Conf on Computer Vision and Pattern Recognition, p., 3716--3725. . doi: 10.1109/CVPR42600.2020.00377http://doi.org/10.1109/CVPR42600.2020.00377.
A Vaswani, , N Shazeer, , N Parmar, , et al., . 2017. . Attention is all you need. . Proc 31st Int Conf on Neural Information Processing Systems, p., 6000--6010. ..
V Veeravasarapu, , C Rothkopf, , R Visvanathan, . 2017. . Adversarially tuned scene generation. . IEEE Conf on Computer Vision and Pattern Recognition, p., 6441--6449. . doi: 10.1109/CVPR.2017.682http://doi.org/10.1109/CVPR.2017.682.
D Vrandečić, , M Krötzsch, . 2014. . Wikidata: a free collaborative knowledge base. . Commun ACM, , 57((10):):78--85. . doi: 10.1145/2629489http://doi.org/10.1145/2629489.
XH Wang, , LC Zhu, , Y Wu, , et al., . 2020. . Symbiotic attention for egocentric action recognition with object-centric alignment. . IEEE Trans Patt Anal Mach Intell, , early access. doi: 10.1109/TPAMI.2020.3015894http://doi.org/10.1109/TPAMI.2020.3015894.
DF Xu, , YK Zhu, , CB Choy, , et al., . 2017. . Scene graph generation by iterative message passing. . IEEE Conf on Computer Vision and Pattern Recognition, p., 3097--3106. . doi: 10.1109/CVPR.2017.330http://doi.org/10.1109/CVPR.2017.330.
Y Yan, , FP Nie, , W Li, , et al., . 2016. . Image classification by cross-media active learning with privileged information. . IEEE Trans Multim, , 18((12):):2494--2502. . doi: 10.1109/TMM.2016.2602938http://doi.org/10.1109/TMM.2016.2602938.
LC Zhu, , HH Fan, , YW Luo, , et al., . 2021. . Temporal cross-layer correlation mining for action recognition. . IEEE Trans Multim, , early access. doi: 10.1109/TMM.2021.3057503http://doi.org/10.1109/TMM.2021.3057503.
Publicity Resources
Related Articles
Related Author
Related Institution