FOLLOWUS
1.State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
2.School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
3.School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
4.Institute of Advanced Semiconductors, Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China
5.Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China
[ "Mingxuan BU, first author of this invited paper, received his BS degree in the School of Materials Science and Engineering at Zhejiang University in 2021. He is now pursuing his MS degree at the State Key Laboratory of Silicon Materials at Zhejiang University. He is currently investigating optoelectronic synaptic devices based on semiconductor nanocrystals." ]
[ "Xiaodong PI, corresponding author of this invited paper, received his PhD degree at the University of Bath in 2004. He then carried out research at McMaster University and the University of Minnesota at Twin Cities. He joined Zhejiang University as an associate professor in 2008. He is now a professor at the State Key Laboratory of Silicon Materials, School of Materials Science and Engineering and Hangzhou Innovation Center at Zhejiang University. Prof. PI is a corresponding expert of Front Inform Technol Electron Eng. His research interest concerns mainly group IV semiconductor materials and devices." ]
Published:0 November 2022,
Published Online:09 September 2022,
Received:29 November 2021,
Revised:24 April 2022,
Scan QR Code
MINGXUAN BU, YUE WANG, LEI YIN, et al. Synaptic devices based on semiconductor nanocrystals. [J]. Frontiers of information technology & electronic engineering, 2022, 23(11): 1579-1601.
MINGXUAN BU, YUE WANG, LEI YIN, et al. Synaptic devices based on semiconductor nanocrystals. [J]. Frontiers of information technology & electronic engineering, 2022, 23(11): 1579-1601. DOI: 10.1631/FITEE.2100551.
近年来,人们对信息处理的需求日益增长,脑启发式神经形态器件得到了广泛的关注。突触器件作为一类重要的神经形态器件,在短短几年内迅速升温。在用于制备突触器件的各种材料中,半导体纳米晶体(NCs)因其优异的电学和光学性能而成为首选材料之一。本综述论文首先介绍了基于半导体纳米晶体的突触器件的研究背景及半导体纳米晶体的基本性质。然后,根据器件有源层所用纳米晶体种类的不同,分类介绍了基于纳米晶体的突触器件的最新研究进展。最后,讨论了基于半导体纳米晶体的突触器件目前仍面临的问题和挑战。
To meet a growing demand for information processing
brain-inspired neuromorphic devices have been intensively studied in recent years. As an important type of neuromorphic device
synaptic devices have attracted strong attention. Among all the kinds of materials explored for the fabrication of synaptic devices
semiconductor nanocrystals (NCs) have become one of the preferred choices due to their excellent electronic and optical properties. In this review
we first introduce the research background of synaptic devices based on semiconductor NCs and briefly present the basic properties of semiconductor NCs. Recent developments in the field of synaptic devices based on semiconductor NCs are then discussed according to the materials employed in the active layers of the devices. Finally
we discuss existing problems and challenges of synaptic devices based on semiconductor NCs.
半导体纳米晶体突触器件神经形态计算
Semiconductor nanocrystalSynaptic devicesNeuromorphic computing
Arduca E, Perego M, 2017. Doping of silicon nanocrystals. Mater Sci Semicond Process, 62:156-170. https://doi.org/10.1016/j.mssp.2016.10.054https://doi.org/10.1016/j.mssp.2016.10.054
Attwell D, Laughlin SB, 2001. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab, 21(10):1133-1145. https://doi.org/10.1097/00004647-200110000-00001https://doi.org/10.1097/00004647-200110000-00001
Block N, 1981. Psychologism and behaviorism. Philos Rev, 90(1):5-43. https://doi.org/10.2307/2184371https://doi.org/10.2307/2184371
Boles MA, Ling DS, Hyeon T, et al., 2016. The surface science of nanocrystals. Nat Mater, 15:141-153. https://doi.org/10.1038/nmat4526https://doi.org/10.1038/nmat4526
Buca D, Minamisawa RA, Trinkaus H, et al., 2009. Relaxation of strained pseudomorphic SixGe1-x layers on He-implanted Si/δ-Si: C/Si(100) substrates. Appl Phys Lett, 95(14):144103. https://doi.org/10.1063/1.3240409https://doi.org/10.1063/1.3240409
Bussian DA, Crooker SA, Yin M, et al., 2009. Tunable magnetic exchange interactions in manganese-doped inverted core-shell ZnSe-CdSe nanocrystals. Nat Mater, 8(1):35-40. https://doi.org/10.1038/nmat2342https://doi.org/10.1038/nmat2342
Chaudhuri RG, Paria S, 2012. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev, 112(4):2373-2433. https://doi.org/10.1021/cr100449nhttps://doi.org/10.1021/cr100449n
Chen JY, Yang DL, Jhuang FC, et al., 2021. Ultrafast responsive and low-energy-consumption poly(3-hexylthiophene)/perovskite quantum dots composite film-based photonic synapse. Adv Funct Mater, 31(47):2105911. https://doi.org/10.1002/adfm.202105911https://doi.org/10.1002/adfm.202105911
Chiu MY, Chen CC, Sheu JT, et al., 2009. An optical programming/electrical erasing memory device: organic thin film transistors incorporating core/shell CdSe@ZnSe quantum dots and poly(3-hexylthiophene). Org Electron, 10(5):769-774. https://doi.org/10.1016/j.orgel.2009.03.011https://doi.org/10.1016/j.orgel.2009.03.011
Choi BJ, Chen ABK, Yang X, et al., 2011. Purely electronic switching with high uniformity, resistance tunability, and good retention in Pt-dispersed SiO2 thin films for ReRAM. Adv Mater, 23(33):3847-3852. https://doi.org/10.1002/adma.201102132https://doi.org/10.1002/adma.201102132
Coe S, Woo WK, Bawendi M, et al., 2002. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature, 420 (6917):800-803. https://doi.org/10.1038/nature01217https://doi.org/10.1038/nature01217
Collier CP, Saykally RJ, Shiang JJ, et al., 1997. Reversible tuning of silver quantum dot monolayers through the metal-insulator transition. Science, 277(5334):1978-1981. https://doi.org/10.1126/science.277.5334.1978https://doi.org/10.1126/science.277.5334.1978
Dai SL, Zhao YW, Wang Y, et al., 2019. Recent advances in transistor-based artificial synapses. Adv Funct Mater, 29(42):1903700. https://doi.org/10.1002/adfm.201903700https://doi.org/10.1002/adfm.201903700
D'amour JA, Froemke RC, 2015. Inhibitory and excitatory spike-timing-dependent plasticity in the auditory cortex. Neuron, 86(2):514-528. https://doi.org/10.1016/j.neuron.2015.03.014https://doi.org/10.1016/j.neuron.2015.03.014
Dasog M, De Los Reyes GB, Titova LV, et al., 2014. Size vs surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. ACS Nano, 8(9):9636-9648. https://doi.org/10.1021/nn504109ahttps://doi.org/10.1021/nn504109a
Debanne D, Guérineau NC, Gähwiler BH, et al., 1996. Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release. J Physiol, 491(1):163-176. https://doi.org/10.1113/jphysiol.1996.sp021204https://doi.org/10.1113/jphysiol.1996.sp021204
Deegan RD, Bakajin O, Dupont TF, et al., 1997. Capillary flow as the cause of ring stains from dried liquid drops. Nature, 389(6653):827-829. https://doi.org/10.1038/39827https://doi.org/10.1038/39827
Dohnalová K, Gregorkiewicz T, Kůsová K, 2014. Silicon quantum dots: surface matters. J Phys Condens Matter, 26(17):173201. https://doi.org/10.1088/0953-8984/26/17/173201https://doi.org/10.1088/0953-8984/26/17/173201
Ekimov AI, Efros AL, Onushchenko AA, 1985. Quantum size effect in semiconductor microcrystals. Sol State Commun, 56(11):921-924. https://doi.org/10.1016/S0038-1098(85)80025-9https://doi.org/10.1016/S0038-1098(85)80025-9
Erogbogbo F, Liu TH, Ramadurai N, et al., 2011. Creating ligand-free silicon germanium alloy nanocrystal inks. ACS Nano, 5(10):7950-7959. https://doi.org/10.1021/nn2023304https://doi.org/10.1021/nn2023304
Esser SK, Merolla PA, Arthur JV, et al., 2016. Convolutional networks for fast, energy-efficient neuromorphic computing. Proc Natl Acad Sci USA, 113(41):11441-11446. https://doi.org/10.1073/pnas.1604850113https://doi.org/10.1073/pnas.1604850113
Gkoupidenis P, Koutsouras DA, Malliaras GG, 2017. Neuromorphic device architectures with global connectivity through electrolyte gating. Nat Commun, 8(1):15448. https://doi.org/10.1038/ncomms15448https://doi.org/10.1038/ncomms15448
Guo LJ, Leobandung E, Chou SY, 1997. A silicon single-electron transistor memory operating at room temperature. Science, 275(5300):649-651. https://doi.org/10.1126/science.275.5300.649https://doi.org/10.1126/science.275.5300.649
Gur I, Fromer NA, Geier ML, et al., 2005. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science, 310(5747):462-465. https://doi.org/10.1126/science.1117908https://doi.org/10.1126/science.1117908
Han C, Han XW, Han JY, et al., 2022. Light‐stimulated synaptic transistor with high PPF feature for artificial visual perception system application. Adv Funct Mater, 32(22):2113053. https://doi.org/10.1002/adfm.202113053https://doi.org/10.1002/adfm.202113053
Hao DD, Zhang JY, Dai SL, et al., 2020. Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl Mater Interf, 12(35):39487-39495. https://doi.org/10.1021/acsami.0c10851https://doi.org/10.1021/acsami.0c10851
He LH, Li EL, He WX, et al., 2021. Complementary of ferroelectric and floating gate structure for high performance organic nonvolatile memory. Adv Electron Mater, 7(11):2100599. https://doi.org/10.1002/aelm.202100599https://doi.org/10.1002/aelm.202100599
He WX, Fang Y, Yang HH, et al., 2019. A multi-input light-stimulated synaptic transistor for complex neuromorphic computing. J Mater Chem C, 7(40):12523-12531. https://doi.org/10.1039/c9tc03898ahttps://doi.org/10.1039/c9tc03898a
Heitmann J, Müller F, Zacharias M, et al., 2005. Silicon nanocrystals: size matters. Adv Mater, 17(7):795-803. https://doi.org/10.1002/adma.200401126https://doi.org/10.1002/adma.200401126
Holman ZC, Kortshagen UR, 2011. Nanocrystal inks without ligands: stable colloids of bare germanium nanocrystals. Nano Lett, 11(5):2133-2136. https://doi.org/10.1021/nl200774yhttps://doi.org/10.1021/nl200774y
Hou YX, Li Y, Zhang ZC, et al., 2021. Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing. ACS Nano, 15(1):1497-1508. https://doi.org/10.1021/acsnano.0c08921https://doi.org/10.1021/acsnano.0c08921
Hu H, Larson RG, 2005. Analysis of the effects of marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir, 21(9):3972-3980. https://doi.org/10.1021/la0475270https://doi.org/10.1021/la0475270
Hu H, Wen GH, Wen JM, et al., 2021. Ambipolar charge storage in type-I core/shell semiconductor quantum dots toward optoelectronic transistor-based memories. Adv Sci, 8(16):2100513. https://doi.org/10.1002/advs.202100513https://doi.org/10.1002/advs.202100513
Hu LX, Yang J, Wang JR, et al., 2021. All-optically controlled memristor for optoelectronic neuromorphic computing. Adv Funct Mater, 31(4):2005582. https://doi.org/10.1002/adfm.202005582https://doi.org/10.1002/adfm.202005582
Huang W, Hang PJ, Wang Y, et al., 2020. Zero-power optoelectronic synaptic devices. Nano Energy, 73:104790. https://doi.org/10.1016/j.nanoen.2020.104790https://doi.org/10.1016/j.nanoen.2020.104790
Hussain T, Abbas H, Youn C, et al., 2022. Cellulose nanocrystal based bio-memristor as a green artificial synaptic device for neuromorphic computing applications. Adv Mater Technol, 7(2):2100744. https://doi.org/10.1002/admt.202100744https://doi.org/10.1002/admt.202100744
Indiveri G, Chicca E, Douglas R, 2006. A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans Neur Netw, 17(1):211-221. https://doi.org/10.1109/TNN.2005.860850https://doi.org/10.1109/TNN.2005.860850
Jiang CB, Zhong ZM, Liu BQ, et al., 2016. Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices. ACS Appl Mater Interf, 8(39):26162-26168. https://doi.org/10.1021/acsami.6b08679https://doi.org/10.1021/acsami.6b08679
Kagan CR, Lifshitz E, Sargent EH, et al., 2016. Building devices from colloidal quantum dots. Science, 353(6302): aac5523. https://doi.org/10.1126/science.aac5523https://doi.org/10.1126/science.aac5523
Kawauchi T, Kano S, Fujii M, 2019. Electrically stimulated synaptic resistive switch in solution-processed silicon nanocrystal thin film: formation mechanism of oxygen vacancy filament for synaptic function. ACS Appl Electron Mater, 1(12):2664-2670. https://doi.org/10.1021/acsaelm.9b00625https://doi.org/10.1021/acsaelm.9b00625
Kim K, Chen CL, Truong Q, et al., 2013. A carbon nanotube synapse with dynamic logic and learning. Adv Mater, 25(12):1693-1698. https://doi.org/10.1002/adma.201203116https://doi.org/10.1002/adma.201203116
Lee E, Kim J, Bhoyate S, et al., 2020. Realizing scalable two-dimensional MoS2 synaptic devices for neuromorphic computing. Chem Mater, 32(24):10447-10455. https://doi.org/10.1021/acs.chemmater.0c03112https://doi.org/10.1021/acs.chemmater.0c03112
Lee WCA, Bonin V, Reed M, et al., 2016. Anatomy and function of an excitatory network in the visual cortex. Nature, 532(7599):370-374. https://doi.org/10.1038/nature17192https://doi.org/10.1038/nature17192
Li EL, Lin WK, Yan YJ, et al., 2019. Synaptic transistor capable of accelerated learning induced by temperature- facilitated modulation of synaptic plasticity. ACS Appl Mater Interf, 11(49):46008-46016. https://doi.org/10.1021/acsami.9b17227https://doi.org/10.1021/acsami.9b17227
Li FS, Son DI, Seo SM, et al., 2007. Organic bistable devices based on core/shell CdSe/ZnS nanoparticles embedded in a conducting poly(N-vinylcarbazole) polymer layer. Appl Phys Lett, 91(12):122111. https://doi.org/10.1063/1.2783189https://doi.org/10.1063/1.2783189
Li Q, Luo TY, Zhou M, et al., 2016. Silicon nanoparticles with surface nitrogen: 90% quantum yield with narrow luminescence bandwidth and the ligand structure based energy law. ACS Nano, 10(9):8385-8393. https://doi.org/10.1021/acsnano.6b03113https://doi.org/10.1021/acsnano.6b03113
Li XM, Rui MC, Song JZ, et al., 2015. Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv Funct Mater, 25(31):4929-4947. https://doi.org/10.1002/adfm.201501250https://doi.org/10.1002/adfm.201501250
Li YY, Wang Y, Yin L, et al., 2021. Silicon-based inorganic-organic hybrid optoelectronic synaptic devices simulating cross-modal learning. Sci China Inform Sci, 64(6):162401. https://doi.org/10.1007/s11432-020-3035-8https://doi.org/10.1007/s11432-020-3035-8
Lin Y, Wang ZQ, Zhang X, et al., 2020. Photoreduced nanocomposites of graphene oxide/N-doped carbon dots toward all-carbon memristive synapses. NPG Asia Mater, 12(1):64. https://doi.org/10.1038/s41427-020-00245-0https://doi.org/10.1038/s41427-020-00245-0
Liu CS, Yan X, Song XF, et al., 2018. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat Nanotechnol, 13(5):404-410. https://doi.org/10.1038/s41565-018-0102-6https://doi.org/10.1038/s41565-018-0102-6
Liu Q, Dou CM, Wang Y, et al., 2009. Formation of multiple conductive filaments in the Cu/ZrO2: Cu/Pt device. Appl Phys Lett, 95(2):023501. https://doi.org/10.1063/1.3176977https://doi.org/10.1063/1.3176977
Liu XK, Zhang YH, Yu T, et al., 2016. Optimum quantum yield of the light emission from 2 to 10 nm hydrosilylated silicon quantum dots. Part Part Syst Charact, 33(1):44-52. https://doi.org/10.1002/ppsc.201500148https://doi.org/10.1002/ppsc.201500148
Liu Y, Gibbs M, Puthussery J, et al., 2010. Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids. Nano Lett, 10(5):1960-1969. https://doi.org/10.1021/nl101284khttps://doi.org/10.1021/nl101284k
Lv ZY, Wang Y, Chen JR, et al., 2020. Semiconductor quantum dots for memories and neuromorphic computing systems. Chem Rev, 120(9):3941-4006. https://doi.org/10.1021/acs.chemrev.9b00730https://doi.org/10.1021/acs.chemrev.9b00730
Ma HL, Wang W, Xu HY, et al., 2018. Interface state-induced negative differential resistance observed in hybrid perovskite resistive switching memory. ACS Appl Mater Interf, 10(25):21755-21763. https://doi.org/10.1021/acsami.8b07850https://doi.org/10.1021/acsami.8b07850
Ma YS, Pi XD, Yang DR, 2012. Fluorine-passivated silicon nanocrystals: surface chemistry versus quantum confinement. J Phys Chem C, 116(9):5401-5406. https://doi.org/10.1021/jp211177dhttps://doi.org/10.1021/jp211177d
Machens CK, 2012. Building the human brain. Science, 338(6111):1156-1157. https://doi.org/10.1126/science.1231865https://doi.org/10.1126/science.1231865
Manipatruni S, Nikonov DE, Young IA, 2018. Beyond CMOS computing with spin and polarization. Nat Phys, 14(4):338-343. https://doi.org/10.1038/s41567-018-0101-4https://doi.org/10.1038/s41567-018-0101-4
Marri I, Degoli E, Ossicini S, 2017. Doped and codoped silicon nanocrystals: the role of surfaces and interfaces. Prog Surf Sci, 92(4):375-408. https://doi.org/10.1016/j.progsurf.2017.07.003https://doi.org/10.1016/j.progsurf.2017.07.003
Mastronardi ML, Maier-Flaig F, Faulkner D, et al., 2012. Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals. Nano Lett, 12(1):337-342. https://doi.org/10.1021/nl2036194https://doi.org/10.1021/nl2036194
Merolla PA, Arthur JV, Alvarez-Icaza R, et al., 2014. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science, 345(6197):668-673. https://doi.org/10.1126/science.1254642https://doi.org/10.1126/science.1254642
Ni ZY, Pi XD, Zhou S, et al., 2016. Size-dependent structures and optical absorption of boron-hyperdoped silicon nanocrystals. Adv Opt Mater, 4(5):700-707. https://doi.org/10.1002/adom.201500706https://doi.org/10.1002/adom.201500706
Ni ZY, Ma LL, Du SC, et al., 2017. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors. ACS Nano, 11(10):9854-9862. https://doi.org/10.1021/acsnano.7b03569https://doi.org/10.1021/acsnano.7b03569
Ni ZY, Wang Y, Liu LX, et al., 2018. Hybrid structure of silicon nanocrystals and 2D WSe2 for broadband optoelectronic synaptic devices. IEEE Int Electron Devices Meeting, p.38.5.1-38.5.4. https://doi.org/10.1109/IEDM.2018.8614657https://doi.org/10.1109/IEDM.2018.8614657
Ni ZY, Zhou S, Zhao SY, et al., 2019. Silicon nanocrystals: unfading silicon materials for optoelectronics. Mater Sci Eng R Rep, 138:85-117. https://doi.org/10.1016/j.mser.2019.06.001https://doi.org/10.1016/j.mser.2019.06.001
Norris DJ, Efros AL, Erwin SC, 2008. Doped nanocrystals. Science, 319(5871):1776-1779. https://doi.org/10.1126/science.1143802https://doi.org/10.1126/science.1143802
Periyal SS, Jagadeeswararao M, Ng SE, et al., 2020. Halide perovskite quantum dots photosensitized-amorphous oxide transistors for multimodal synapses. Adv Mater Technol, 5(11):2000514. https://doi.org/10.1002/admt.202000514https://doi.org/10.1002/admt.202000514
Pradhan B, Das S, Li JX, et al., 2020. Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice. Sci Adv, 6(7):eaay5225. https://doi.org/10.1126/sciadv.aay5225https://doi.org/10.1126/sciadv.aay5225
Prezioso M, Merrikh-Bayat F, Hoskins BD, et al., 2015. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 521(7550):61-64. https://doi.org/10.1038/nature14441https://doi.org/10.1038/nature14441
Schaller RD, Klimov VI, 2004. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys Rev Lett, 92(18):186601. https://doi.org/10.1103/PhysRevLett.92.186601https://doi.org/10.1103/PhysRevLett.92.186601
Schaller RD, Agranovich VM, Klimov VI, 2005. High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states. Nat Phys, 1(3):189-194. https://doi.org/10.1038/nphys151https://doi.org/10.1038/nphys151
Searle JR, 1980. Minds, brains, and programs. Behav Brain Sci, 3(3):417-424. https://doi.org/10.1017/S0140525X00005756https://doi.org/10.1017/S0140525X00005756
Semonin OE, Johnson JC, Luther JM, et al., 2010. Absolute photoluminescence quantum yields of IR-26 dye, PbS, and PbSe quantum dots. J Phys Chem Lett, 1(16):2445-2450. https://doi.org/10.1021/jz100830rhttps://doi.org/10.1021/jz100830r
Service RF, 2004. Printable electronics that stick around. Science, 304(5671):675. https://doi.org/10.1126/science.304.5671.675https://doi.org/10.1126/science.304.5671.675
Singh M, Goyal M, Devlal K, 2018. Size and shape effects on the band gap of semiconductor compound nanomaterials. J Taibah Univ Sci, 12(4):470-475. https://doi.org/10.1080/16583655.2018.1473946https://doi.org/10.1080/16583655.2018.1473946
Smith AM, Nie SM, 2010. Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res, 43(2):190-200. https://doi.org/10.1021/ar9001069https://doi.org/10.1021/ar9001069
So WY, Li Q, Legaspi CM, et al., 2018. Mechanism of ligand-controlled emission in silicon nanoparticles. ACS Nano, 12(7):7232-7238. https://doi.org/10.1021/acsnano.8b03273https://doi.org/10.1021/acsnano.8b03273
Sonawane KG, Rajesh C, Temgire M, et al., 2011. A case study: Te in ZnSe and Mn-doped ZnSe quantum dots. Nanotechnology, 22(30):305702. https://doi.org/10.1088/0957-4484/22/30/305702https://doi.org/10.1088/0957-4484/22/30/305702
Sun YL, Ding YT, Xie D, 2021a. Mixed-dimensional van der Waals heterostructures enabled optoelectronic synaptic devices for neuromorphic applications. Adv Funct Mater, 31(47):2105625. https://doi.org/10.1002/adfm.202105625https://doi.org/10.1002/adfm.202105625
Sun YL, Ding YT, Xie D, et al., 2021b. Optogenetics-inspired neuromorphic optoelectronic synaptic transistors with optically modulated plasticity. Adv Opt Mater, 9(12):2002232. https://doi.org/10.1002/adom.202002232https://doi.org/10.1002/adom.202002232
Talapin DV, Murray CB, 2005. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science, 310(5745):86-89. https://doi.org/10.1126/science.1116703https://doi.org/10.1126/science.1116703
Talgorn E, Gao YN, Aerts M, et al., 2011. Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids. Nat Nanotechnol, 6(11):733-739. https://doi.org/10.1038/nnano.2011.159https://doi.org/10.1038/nnano.2011.159
Tan H, Ni ZY, Peng WB, et al., 2018. Broadband optoelectronic synaptic devices based on silicon nanocrystals for neuromorphic computing. Nano Energy, 52:422-430. https://doi.org/10.1016/j.nanoen.2018.08.018https://doi.org/10.1016/j.nanoen.2018.08.018
Tang JS, Yuan F, Shen XK, et al., 2019. Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges. Adv Mater, 31(49):1902761. https://doi.org/10.1002/adma.201902761https://doi.org/10.1002/adma.201902761
Thomas A, Resmi AN, Ganguly A, et al., 2020. Programmable electronic synapse and nonvolatile resistive switches using MoS2 quantum dots. Sci Rep, 10(1):12450. https://doi.org/10.1038/s41598-020-68822-5https://doi.org/10.1038/s41598-020-68822-5
Turing AM, 1950. Computing machinery and intelligence. Mind, 59(236):433-460.
Upadhyay NK, Joshi S, Yang JJ, 2016. Synaptic electronics and neuromorphic computing. Sci China Inform Sci, 59(6): 061404. https://doi.org/10.1007/s11432-016-5565-1https://doi.org/10.1007/s11432-016-5565-1
van de Burgt Y, Melianas A, Keene ST, et al., 2018. Organic electronics for neuromorphic computing. Nat Electron, 1(7):386-397. https://doi.org/10.1038/s41928-018-0103-3https://doi.org/10.1038/s41928-018-0103-3
Wang K, Dai SL, Zhao YW, et al., 2019. Light-stimulated synaptic transistors fabricated by a facile solution process based on inorganic perovskite quantum dots and organic semiconductors. Small, 15(11):1900010. https://doi.org/10.1002/smll.201900010https://doi.org/10.1002/smll.201900010
Wang Q, Shao YC, Xie HP, et al., 2014. Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Appl Phys Lett, 105(16):163508. https://doi.org/10.1063/1.4899051https://doi.org/10.1063/1.4899051
Wang R, Pi XD, Yang DR, 2012. First-principles study on the surface chemistry of 1.4 nm silicon nanocrystals: case of hydrosilylation. J Phys Chem C, 116(36):19434-19443. https://doi.org/10.1021/jp307785vhttps://doi.org/10.1021/jp307785v
Wang TY, Meng JL, Rao MY, et al., 2020. Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application. Nano Lett, 20(6):4111-4120. https://doi.org/10.1021/acs.nanolett.9b05271https://doi.org/10.1021/acs.nanolett.9b05271
Wang Y, Lv ZY, Chen JR, et al., 2018. Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv Mater, 30(38):1802883. https://doi.org/10.1002/adma.201802883https://doi.org/10.1002/adma.201802883
Wang Y, Yin L, Huang W, et al., 2021. Optoelectronic synaptic devices for neuromorphic computing. Adv Intell Syst, 3(1):2000099. https://doi.org/10.1002/aisy.202000099https://doi.org/10.1002/aisy.202000099
Wang Y, Zhu YY, Li YY, et al., 2022. Dual-modal optoelectronic synaptic devices with versatile synaptic plasticity. Adv Funct Mater, 32(1):2107973. https://doi.org/10.1002/adfm.202107973https://doi.org/10.1002/adfm.202107973
Wang ZQ, Zeng T, Ren YY, et al., 2020. Toward a generalized Bienenstock-Cooper-Munro rule for spatiotemporal learning via triplet-STDP in memristive devices. Nat Commun, 11(1):1510. https://doi.org/10.1038/s41467-020-15158-3https://doi.org/10.1038/s41467-020-15158-3
Yan CY, Wen JM, Lin P, et al., 2019. A tunneling dielectric layer free floating gate nonvolatile memory employing type-I core–shell quantum dots as discrete charge-trapping/tunneling centers. Small, 15(1):1804156. https://doi.org/10.1002/smll.201804156https://doi.org/10.1002/smll.201804156
Yan XB, Pei YF, Chen HW, et al., 2019. Self-assembled networked PbS distribution quantum dots for resistive switching and artificial synapse performance boost of memristors. Adv Mater, 31(7):1805284. https://doi.org/10.1002/adma.201805284https://doi.org/10.1002/adma.201805284
Yang FQ, 2021. Size effect on the bandgap change of quantum dots: thermomechanical deformation. Phys Lett A, 401:127346. https://doi.org/10.1016/j.physleta.2021.127346https://doi.org/10.1016/j.physleta.2021.127346
Yang J, Choi MK, Kim DH, et al., 2016. Designed assembly and integration of colloidal nanocrystals for device applications. Adv Mater, 28(6):1176-1207. https://doi.org/10.1002/adma.201502851https://doi.org/10.1002/adma.201502851
Yin L, Han C, Zhang QT, et al., 2019. Synaptic silicon-nanocrystal phototransistors for neuromorphic computing. Nano Energy, 63:103859. https://doi.org/10.1016/j.nanoen.2019.103859https://doi.org/10.1016/j.nanoen.2019.103859
Yin L, Pi XD, Yang DR, 2020. Silicon-based optoelectronic synaptic devices. Chin Phys B, 29(7):070703. https://doi.org/10.1088/1674-1056/ab973fhttps://doi.org/10.1088/1674-1056/ab973f
Yu JS, Kim I, Kim JS, et al., 2012. Silver front electrode grids for ITO-free all printed polymer solar cells with embedded and raised topographies, prepared by thermal imprint, flexographic and inkjet roll-to-roll processes. Nanoscale, 4(19):6032-6040. https://doi.org/10.1039/c2nr31508dhttps://doi.org/10.1039/c2nr31508d
Zeng T, Yang Z, Liang JB, et al., 2021. Flexible and transparent memristive synapse based on polyvinylpyrrolidone/N-doped carbon quantum dot nanocomposites for neuromorphic computing. Nanoscale Adv, 3(9):2623-2631. https://doi.org/10.1039/D1NA00152Chttps://doi.org/10.1039/D1NA00152C
Zhang H, Zhang YT, Yu Y, et al., 2017. Ambipolar quantum-dot-based low-voltage nonvolatile memory with double floating gates. ACS Photon, 4(9):2220-2227. https://doi.org/10.1021/acsphotonics.7b00416https://doi.org/10.1021/acsphotonics.7b00416
Zhang XN, Yang HY, Jiang ZG, et al., 2019. Photoresponse of nonvolatile resistive memory device based on all-inorganic perovskite CsPbBr3 nanocrystals. J Phys D Appl Phys, 52(12):125103. https://doi.org/10.1088/1361-6463/aafe8ehttps://doi.org/10.1088/1361-6463/aafe8e
Zhao SY, Ni ZY, Tan H, et al., 2018a. Electroluminescent synaptic devices with logic functions. Nano Energy, 54:383-389. https://doi.org/10.1016/j.nanoen.2018.10.018https://doi.org/10.1016/j.nanoen.2018.10.018
Zhao SY, Liu XK, Pi XD, et al., 2018b. Light-emitting diodes based on colloidal silicon quantum dots. J Semicond, 39(6):061008. https://doi.org/10.1088/1674-4926/39/6/061008https://doi.org/10.1088/1674-4926/39/6/061008
Zhao SY, Wang Y, Huang W, et al., 2019. Developing near-infrared quantum-dot light-emitting diodes to mimic synaptic plasticity. Sci China Mater, 62(10):1470-1478. https://doi.org/10.1007/s40843-019-9437-9https://doi.org/10.1007/s40843-019-9437-9
Zhao XL, Ma J, Xiao XH, et al., 2018. Breaking the current-retention dilemma in cation-based resistive switching devices utilizing graphene with controlled defects. Adv Mater, 30(14):1705193. https://doi.org/10.1002/adma.201705193https://doi.org/10.1002/adma.201705193
Zhao XN, Wang ZQ, Li WT, et al., 2020. Photoassisted electroforming method for reliable low-power organic–inorganic perovskite memristors. Adv Funct Mater, 30(17):1910151. https://doi.org/10.1002/adfm.201910151https://doi.org/10.1002/adfm.201910151
Zhou S, Ni ZY, Ding Y, et al., 2016. Ligand-free, colloidal, and plasmonic silicon nanocrystals heavily doped with boron. ACS Photon, 3(3):415-422. https://doi.org/10.1021/acsphotonics.5b00568https://doi.org/10.1021/acsphotonics.5b00568
Zhu LQ, Xiao H, Liu YH, et al., 2015. Multi-gate synergic modulation in laterally coupled synaptic transistors. Appl Phys Lett, 107(14):143502. https://doi.org/10.1063/1.4932568https://doi.org/10.1063/1.4932568
Zhu YB, Wu CX, Xu ZW, et al., 2021. Light-emitting memristors for optoelectronic artificial efferent nerve. Nano Lett, 21(14):6087-6094. https://doi.org/10.1021/acs.nanolett.1c01482https://doi.org/10.1021/acs.nanolett.1c01482
Zhu YY, Huang W, He YF, et al., 2020. Perovskite-enhanced silicon-nanocrystal optoelectronic synaptic devices for the simulation of biased and correlated random-walk learning. Research, 2020:7538450. https://doi.org/10.34133/2020/7538450https://doi.org/10.34133/2020/7538450
Zidan MA, Strachan JP, Lu WD, 2018. The future of electronics based on memristive systems. Nat Electron, 1(1):22-29. https://doi.org/10.1038/s41928-017-0006-8https://doi.org/10.1038/s41928-017-0006-8
Publicity Resources
Related Articles
Related Author
Related Institution