HE DENG, YONGYI YAN, ZENGQIANG CHEN. A matrix-based static approach to analysis of finite state machines. [J]. Frontiers of information technology & electronic engineering, 2022, 23(8): 1239-1246.
DOI:
HE DENG, YONGYI YAN, ZENGQIANG CHEN. A matrix-based static approach to analysis of finite state machines. [J]. Frontiers of information technology & electronic engineering, 2022, 23(8): 1239-1246. DOI: 10.1631/FITEE.2100561.
A matrix-based static approach to analysis of finite state machinesEnhanced Publication
Traditional matrix-based approaches in the field of finite state machines construct state transition matrices
and then use the powers of the state transition matrices to represent corresponding dynamic transition processes
which are cornerstones of system analysis. In this study
we propose a static matrix-based approach that revisits a finite state machine from its structure rather than its dynamic transition process
thus avoiding the "explosion of complexity" problem inherent in the existing approaches. Based on the static approach
we reexamine the issues of closed-loop detection and controllability for deterministic finite state machines. In addition
we propose controllable equivalent form and minimal controllable equivalent form concepts and give corresponding algorithms.
关键词
逻辑系统有限值系统矩阵的半张量积有限状态机矩阵方法
Keywords
Logical systemsFinite-valued systemsSemi-tensor product of matricesFinite state machinesMatrix approaches
references
Chen ZQ, Zhou YR, Zhang ZP, et al., 2020. Semi-tensor product of matrices approach to the problem of fault detection for discrete event systems (DESs). IEEE Trans Circ Syst II Expr Briefs, 67(12):3098-3102. doi: 10.1109/TCSII.2020.2967062http://doi.org/10.1109/TCSII.2020.2967062
Cheng DZ, Qi HS, 2010. A linear representation of dynamics of Boolean networks. IEEE Trans Autom Contr, 55(10):2251-2258. doi: 10.1109/TAC.2010.2043294http://doi.org/10.1109/TAC.2010.2043294
Han XG, Chen ZQ, Liu ZX, et al., 2018. The detection and stabilisation of limit cycle for deterministic finite automata. Int J Contr, 91(4):874-886. doi: 10.1080/00207179.2017.1295319http://doi.org/10.1080/00207179.2017.1295319
Lu JQ, Li HT, Liu Y, et al., 2017. Survey on semi-tensor product method with its applications in logical networks and other finite-valued systems. IET Contr Theory Appl, 11(13):2040-2047. doi: 10.1049/iet-cta.2016.1659http://doi.org/10.1049/iet-cta.2016.1659
Lu JQ, Sun LJ, Liu Y, et al., 2018. Stabilization of Boolean control networks under aperiodic sampled-data control. SIAM J Contr Optim, 56(6):4385-4404. doi: 10.1137/18M1169308http://doi.org/10.1137/18M1169308
Xu Q, Zhang ZP, Yan YY, et al., 2021. Security and privacy with K-step opacity for finite automata via a novel algebraic approach. Trans Inst Meas Contr, 43(16):3606-3614. doi: 10.1177/01423312211040314http://doi.org/10.1177/01423312211040314
Xu XR, Hong YG, 2013a. Matrix approach to model matching of asynchronous sequential machines. IEEE Trans Autom Contr, 58(11):2974-2979. doi: 10.1109/TAC.2013.2259957http://doi.org/10.1109/TAC.2013.2259957
Xu XR, Hong YG, 2013b. Observability analysis and observer design for finite automata via matrix approach. IET Contr Theory Appl, 7(12):1609-1615. doi: 10.1049/iet-cta.2013.0096http://doi.org/10.1049/iet-cta.2013.0096
Yan YY, Chen ZQ, Liu ZX, 2014. Semi-tensor product of matrices approach to reachability of finite automata with application to language recognition. Front Comput Sci, 8(6):948-957. doi: 10.1007/s11704-014-3425-yhttp://doi.org/10.1007/s11704-014-3425-y
Yan YY, Deng H, Chen ZQ, 2021. A new look at the critical observability of finite state machines from an algebraic viewpoint. Asian J Contr, early access. doi: 10.1002/asjc.2705http://doi.org/10.1002/asjc.2705
Yan YY, Yue JM, Chen ZQ, 2022. Observed data-based model construction of finite state machines using exponential representation of LMs. IEEE Trans Circ Syst II Expr Briefs, 69(2):434-438. doi: 10.1109/TCSII.2021.3087189http://doi.org/10.1109/TCSII.2021.3087189
Yue JM, Yan YY, Chen ZQ, 2019. Language acceptability of finite automata based on theory of semi-tensor product of matrices. Asian J Contr, 21(6):2634-2643. doi: 10.1002/asjc.2190http://doi.org/10.1002/asjc.2190
Zhu R, Chen ZQ, Zhang JL, et al., 2022. Strategy optimization of weighted networked evolutionary games with switched topologies and threshold. Knowl-Based Syst, 235:107644. doi: 10.1016/j.knosys.2021.107644http://doi.org/10.1016/j.knosys.2021.107644
Zhu SM, Feng JE, Sun LY, 2021. Matrix expression of Owen values. Asian J Contr, early access. doi: 10.1002/asjc.2738http://doi.org/10.1002/asjc.2738