FOLLOWUS
1.National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou510641, China
2.Key Laboratory of Polymer Processing Engineering of the Ministry of Education, South China University of Technology, Guangzhou510641, China
3.Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou510641, China
†E-mail: wangyj84@scut.edu.cn
Published:23 September 2022,
Received:22 December 2021,
Accepted:2022-06-02
Scan QR Code
ZHIHAO HE, GANG JIN, YINGJUN WANG. A novel grey wolf optimizer and its applications in 5G frequency selection surface design. [J]. Frontiers of information technology & electronic engineering, 2022, 23(9): 1338-1353.
ZHIHAO HE, GANG JIN, YINGJUN WANG. A novel grey wolf optimizer and its applications in 5G frequency selection surface design. [J]. Frontiers of information technology & electronic engineering, 2022, 23(9): 1338-1353. DOI: 10.1631/FITEE.2100580.
第五代无线通信系统(5G)的发展使元启发算法与电磁设备的设计过程结合得更为紧密。本文提出一种自适应灰狼优化器(SAGWO),并将其与一种基于单元节点的5G频率选择面(FSS)优化模型相结合。SAGWO包含3种改进策略:改进初始头狼的分配,增加随机探索能力和增强局部搜索能力,以加快收敛速度,有效避免局部最优。在基准函数测试中,SAGWO优于其他5种优化算法:原始灰狼优化器(GWO)、遗传算法(GA)、粒子群优化器(PSO)、改进灰狼优化算法(IGWO)和基于选择性对抗的灰狼优化算法(SOGWO)。因为SAGWO具有良好全局寻优能力,所以SAGWO适用于解决具有较大设计空间的5G FSS优化问题。将SAGWO与新的FSS优化模型相结合,能自动生成在中心工作频率处具有电磁屏蔽能力的FSS结构。为验证所提方法,本文设计了在28 GHz处具有电磁屏蔽能力的双层环形FSS。结果表明,优化后的FSS在中心频率处具有较好电磁干扰屏蔽能力和较高角稳定性。最后,制作并测试了优化后的FSS样品。
In fifth-generation wireless communication system (5G)
more connections are built between metaheuristics and electromagnetic equipment design. In this paper
we propose a self-adaptive grey wolf optimizer (SAGWO) combined with a novel optimization model of a 5G frequency selection surface (FSS) based on FSS unit nodes. SAGWO includes three improvement strategies
improving the initial distribution
increasing the randomness
and enhancing the local search
to accelerate the convergence and effectively avoid local optima. In benchmark tests
the proposed optimizer performs better than the five other optimization algorithms: original grey wolf optimizer (GWO)
genetic algorithm (GA)
particle swarm optimizer (PSO)
improved grey wolf optimizer (IGWO)
and selective opposition based grey wolf optimization (SOGWO). Due to its global searchability
SAGWO is suitable for solving the optimization problem of a 5G FSS that has a large design space. The combination of SAGWO and the new FSS optimization model can automatically obtain the shape of the FSS unit with electromagnetic interference shielding capability at the center operating frequency. To verify the performance of the proposed method
a double-layer ring FSS is designed with the purpose of providing electromagnetic interference shielding features at 28 GHz. The results show that the optimized FSS has better electromagnetic interference shielding at the center frequency and has higher angular stability. Finally
a sample of the optimized FSS is fabricated and tested.
灰狼优化算法第五代无线通信系统(5G)频率选择面形状优化
Grey wolf optimizerFifth-generation wireless communication system (5G)Frequency selection surfaceShape optimization
Aljarah I, Ludwig SA, 2013. A new clustering approach based on glowworm swarm optimization. IEEE Congress on Evolutionary Computation, p.2642-2649. https://doi.org/10.1109/CEC.2013.6557888https://doi.org/10.1109/CEC.2013.6557888
An D, Kim NH, Choi JH, 2015. Practical options for selecting data-driven or physics-based prognostics algorithms with reviews. Reliab Eng Syst Safety, 133:223-236. https://doi.org/10.1016/j.ress.2014.09.014https://doi.org/10.1016/j.ress.2014.09.014
Boursianis AD, Goudos SK, Yioultsis TV, et al., 2019. Low-cost dual-band E-shaped patch antenna for energy harvesting applications using grey wolf optimizer. 13th European Conf on Antennas and Propagation, p.1-5.
Cai ZN, Gu JH, Luo J, et al., 2019. Evolving an optimal kernel extreme learning machine by using an enhanced grey wolf optimization strategy. Expert Syst Appl, 138:112814. https://doi.org/10.1016/j.eswa.2019.07.031https://doi.org/10.1016/j.eswa.2019.07.031
Carrasco J, García S, Rueda MM, et al., 2020. Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: practical guidelines and a critical review. Swarm Evol Comput, 54:100665. https://doi.org/10.1016/j.swevo.2020.100665https://doi.org/10.1016/j.swevo.2020.100665
Crevecoeur G, Sergeant P, Dupré L, et al., 2010. A two-level genetic algorithm for electromagnetic optimization. IEEE Trans Magn, 46(7):2585-2595. https://doi.org/10.1109/TMAG.2010.2044186https://doi.org/10.1109/TMAG.2010.2044186
Dehghani M, Seifi A, Riahi-Madvar H, 2019. Novel forecasting models for immediate-short-term to long-term influent flow prediction by combining ANFIS and grey wolf optimization. J Hydrol, 576:698-725. https://doi.org/10.1016/j.jhydrol.2019.06.065https://doi.org/10.1016/j.jhydrol.2019.06.065
Dhargupta S, Ghosh M, Mirjalili S, et al., 2020. Selective opposition based grey wolf optimization. Expert Syst Appl, 151:113389. https://doi.org/10.1016/j.eswa.2020.113389https://doi.org/10.1016/j.eswa.2020.113389
Donyaii A, Sarraf A, Ahmadi H, 2020. Water reservoir multiobjective optimal operation using grey wolf optimizer. Shock Vibr, 2020:8870464. https://doi.org/10.1155/2020/8870464https://doi.org/10.1155/2020/8870464
Ge YH, Esselle KP, Hao Y, 2007. Design of low-profile high-gain EBG resonator antennas using a genetic algorithm. IEEE Antenn Wirel Propag Lett, 6:480-483. https://doi.org/10.1109/LAWP.2007.907054https://doi.org/10.1109/LAWP.2007.907054
Genovesi S, Mittra R, Monorchio A, et al., 2006. Particle swarm optimization for the design of frequency selective surfaces. IEEE Antenn Wirel Propag Lett, 5:277-279. https://doi.org/10.1109/LAWP.2006.875900https://doi.org/10.1109/LAWP.2006.875900
Goudos SK, Yioultsis TV, Boursianis AD, et al., 2019. Application of new hybrid Jaya grey wolf optimizer to antenna design for 5G communications systems. IEEE Access, 7:71061-71071. https://doi.org/10.1109/ACCESS.2019.2919116https://doi.org/10.1109/ACCESS.2019.2919116
Gupta S, Deep K, 2019. A novel random walk grey wolf optimizer. Swarm Evol Comput, 44:101-112. https://doi.org/10.1016/j.swevo.2018.01.001https://doi.org/10.1016/j.swevo.2018.01.001
Gutiérrez AL, Lanza M, Barriuso I, et al., 2011. Multilayer FSS optimizer based on PSO and CG-FFT. IEEE Int Symp on Antennas and Propagation, p.2661-2664. https://doi.org/10.1109/APS.2011.5997072https://doi.org/10.1109/APS.2011.5997072
Heidari AA, Mirjalili S, Faris H, et al., 2019. Harris hawks optimization: algorithm and applications. Fut Gener Comput Syst, 97:849-872. https://doi.org/10.1016/j.future.2019.02.028https://doi.org/10.1016/j.future.2019.02.028
Hu J, Chen HL, Heidari AA, et al., 2021. Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection. Knowl-Based Syst, 213:106684. https://doi.org/10.1016/j.knosys.2020.106684https://doi.org/10.1016/j.knosys.2020.106684
Khan SU, Rahim MKA, Ali L, 2018. Correction of array failure using grey wolf optimizer hybridized with an interior point algorithm. Front Inform Technol Electron Eng, 19(9):1191-1202. https://doi.org/10.1631/FITEE.1601694https://doi.org/10.1631/FITEE.1601694
Li D, Li TW, Hao R, et al., 2017. A low-profile broadband bandpass frequency selective surface with two rapid band edges for 5G near-field applications. IEEE Trans Electromagn Compat, 59(2):670-676. https://doi.org/10.1109/TEMC.2016.2634279https://doi.org/10.1109/TEMC.2016.2634279
Li D, Li TW, Li EP, et al., 2018. A 2.5-D angularly stable frequency selective surface using via-based structure for 5G EMI shielding. IEEE Trans Electromagn Compat, 60(3):768-775. https://doi.org/10.1109/TEMC.2017.2748566https://doi.org/10.1109/TEMC.2017.2748566
Li Q, Chen HL, Huang H, et al., 2017. An enhanced grey wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis. Comput Math Methods Med, 2017:9512741. https://doi.org/10.1155/2017/9512741https://doi.org/10.1155/2017/9512741
Liu Y, Zhang YM, Gao S, 2020. Pattern synthesis of antenna arrays using dynamic cooperative grey wolf optimizer algorithm. IEEE 10th Int Conf on Electronics Information and Emergency Communication, p.186-189. https://doi.org/10.1109/ICEIEC49280.2020.9152282https://doi.org/10.1109/ICEIEC49280.2020.9152282
Mirjalili S, 2016. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neur Comput Appl, 27(4):1053-1073. https://doi.org/10.1007/s00521-015-1920-1https://doi.org/10.1007/s00521-015-1920-1
Mirjalili S, Mirjalili SM, Lewis A, 2014. Grey wolf optimizer. Adv Eng Softw, 69:46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007https://doi.org/10.1016/j.advengsoft.2013.12.007
Mohanty S, Subudhi B, Ray PK, 2016. A new MPPT design using grey wolf optimization technique for photovoltaic system under partial shading conditions. IEEE Trans Sustain Energy, 7(1):181-188. https://doi.org/10.1109/TSTE.2015.2482120https://doi.org/10.1109/TSTE.2015.2482120
Nadimi-Shahraki MH, Taghian S, Mirjalili S, 2021. An improved grey wolf optimizer for solving engineering problems. Expert Syst Appl, 166:113917. https://doi.org/10.1016/j.eswa.2020.113917https://doi.org/10.1016/j.eswa.2020.113917
Parker EA, Chuprin AD, Batchelor JC, et al., 2001. GA optimisation of crossed dipole FSS array geometry. Electron Lett, 37(16):996-997. https://doi.org/10.1049/el:20010713https://doi.org/10.1049/el:20010713
Paul GS, Mandal K, Das P, 2021. Low profile polarization-insensitive wide stop-band frequency selective surface with effective electromagnetic shielding. Int J RF Microw Comput Aided Eng, 31(3):e22527. https://doi.org/10.1002/mmce.22527https://doi.org/10.1002/mmce.22527
Peng T, Zhou BH, 2019. Hybrid bi-objective gray wolf optimization algorithm for a truck scheduling problem in the automotive industry. Appl Soft Comput, 81:105513. https://doi.org/10.1016/j.asoc.2019.105513https://doi.org/10.1016/j.asoc.2019.105513
Phan HD, Ellis K, Barca JC, et al., 2020. A survey of dynamic parameter setting methods for nature-inspired swarm intelligence algorithms. Neur Comput Appl, 32(2):567-588. https://doi.org/10.1007/s00521-019-04229-2https://doi.org/10.1007/s00521-019-04229-2
Saxena P, Kothari A, 2016. Optimal pattern synthesis of linear antenna array using grey wolf optimization algorithm. Int J Antenn Propag, 2016:1205970. https://doi.org/10.1155/2016/1205970https://doi.org/10.1155/2016/1205970
Shakarami MR, Davoudkhani FI, 2016. Wide-area power system stabilizer design based on grey wolf optimization algorithm considering the time delay. Electr Power Syst Res, 133:149-159. https://doi.org/10.1016/j.epsr.2015.12.019https://doi.org/10.1016/j.epsr.2015.12.019
Tu JZ, Chen HL, Wang MJ, et al., 2021. The colony predation algorithm. J Bion Eng, 18(3):674-710. https://doi.org/10.1007/s42235-021-0050-yhttps://doi.org/10.1007/s42235-021-0050-y
Villegas FJ, Cwik T, Rahmat-Samii Y, et al., 2004. A parallel electromagnetic genetic-algorithm optimization (EGO) application for patch antenna design. IEEE Trans Antenn Propag, 52(9):2424-2435. https://doi.org/10.1109/TAP.2004.834071https://doi.org/10.1109/TAP.2004.834071
Wang GG, 2018. Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memet Comput, 10(2):151-164. https://doi.org/10.1007/s12293-016-0212-3https://doi.org/10.1007/s12293-016-0212-3
Wang GG, Deb S, Cui Z, 2019. Monarch butterfly optimization. Neur Comput Appl, 31(7):1995-2014. https://doi.org/10.1007/s00521-015-1923-yhttps://doi.org/10.1007/s00521-015-1923-y
Yu HL, Song JM, Chen CC, et al., 2022. Image segmentation of Leaf Spot Diseases on Maize using multi-stage Cauchy-enabled grey wolf algorithm. Eng Appl Artif Intell, 109:104653. https://doi.org/10.1016/j.engappai.2021.104653https://doi.org/10.1016/j.engappai.2021.104653
Zou DX, Liu HK, Gao LQ, et al., 2011. An improved differential evolution algorithm for the task assignment problem. Eng Appl Artif Intell, 24(4):616-624. https://doi.org/10.1016/j.engappai.2010.12.002https://doi.org/10.1016/j.engappai.2010.12.002
Publicity Resources
Related Articles
Related Author
Related Institution