

FOLLOWUS
State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, National University of Defense Technology, Changsha 410073, China
‡Corresponding author
Published:0 March 2023,
Received:11 July 2022,
Revised:21 October 2022,
Scan QR Code
QIHUA WU, FENG ZHAO, TIEHUA ZHAO, et al. Stepped frequency chirp signal imaging radar jamming using two-dimensional nonperiodic phase modulation. [J]. Frontiers of information technology & electronic engineering, 2023, 24(3): 433-446.
QIHUA WU, FENG ZHAO, TIEHUA ZHAO, et al. Stepped frequency chirp signal imaging radar jamming using two-dimensional nonperiodic phase modulation. [J]. Frontiers of information technology & electronic engineering, 2023, 24(3): 433-446. DOI: 10.1631/FITEE.2200298.
步进线性调频雷达信号可以通过多个窄带子线性调频脉冲合成的方式获取目标高分辨图像。由于步进线性调频雷达信号对雷达瞬时带宽要求较低,已成为最常用的宽带雷达波形之一。本文针对步进线性调频成像雷达对抗问题,提出一种基于二维非周期相位调制的雷达干扰方法。所提方法利用非周期相位调制产生高水平旁瓣的独特特性,可在雷达图像上形成沿距离向与方位向二维分布的压制性干扰,从而使得目标无法被有效识别。在此基础上,讨论了编码码元宽度与占空比等不同调制参数对干扰特性的影响,并进一步给出相应干扰参数设计准则。最后,通过雅克-42飞机数据仿真以及实测无人机数据实验证明所提干扰方法的有效性。
Stepped frequency chirp signal obtains high-resolution radar images by synthesizing multiple narrowband chirp pulses. It has been one of the most commonly used wideband radar waveforms due to its lower demand for radar instant bandwidth. In this paper
we propose a radar jamming method using two-dimensional nonperiodic phase modulation against stepped frequency chirp signal imaging radar. Using the unique property of nonperiodic phase modulation
the proposed method can generate high-level sidelobes that perform as a special blanket jamming along both the range and azimuth directions and make the target unrecognizable. Then
the influence of different modulation parameters
such as the code width and duty ratio
are further discussed. Based on this
the corresponding parameter design principles are presented. Finally
the validity of the proposed method is demonstrated by the Yake-42 plane data simulation and measured unmanned aerial vehicle data experiment.
雷达干扰步进线性调频信号非周期相位调制宽带雷达
Radar jammingStepped frequency chirp signalNonperiodic phase modulationWideband radar
Bo Z, Zhou F, Shi XR, et al., 2015. Multiple targets deception jamming against ISAR using electromagnetic properties. IEEE Sens J, 15(4):2031-2038. https://doi.org/10.1109/JSEN.2014.2368985https://doi.org/10.1109/JSEN.2014.2368985
Feng DJ, Tao HM, Yang Y, et al., 2011. Jamming de-chirping radar using interrupted-sampling repeater. Sci China Inform Sci, 54(10):2138-2146. https://doi.org/10.1007/s11432-011-4431-4https://doi.org/10.1007/s11432-011-4431-4
Feng DJ, Xu LT, Pan XY, et al., 2017. Jamming wideband radar using interrupted-sampling repeater. IEEE Trans Aerosp Electron Syst, 53(3):1341-1354. https://doi.org/10.1109/TAES.2017.2670958https://doi.org/10.1109/TAES.2017.2670958
Huang CJ, Chan EHW, 2021. Photonic-assisted microwave frequency and phase shifter for deception jamming. IEEE Photon J, 13(3):1-10. https://doi.org/10.1109/JPHOT.2021.3074164https://doi.org/10.1109/JPHOT.2021.3074164
Kang BS, Lee K, Kim KT, 2021. Image registration for 3-D interferometric-ISAR imaging through joint-channel phase difference functions. IEEE Trans Aerosp Electron Syst, 57(1):22-38. https://doi.org/10.1109/TAES.2020.3021108https://doi.org/10.1109/TAES.2020.3021108
Luo Y, Zhang Q, Qiu CW, et al., 2010. Micro-Doppler effect analysis and feature extraction in ISAR imaging with stepped-frequency chirp signals. IEEE Trans Geosci Remote Sens, 48(4):2087-2098. https://doi.org/10.1109/TGRS.2009.2034367https://doi.org/10.1109/TGRS.2009.2034367
Meller M, 2012. Cheap cancellation of strong echoes for digital passive and noise radars. IEEE Trans Signal Process, 60(5):2654-2659. https://doi.org/10.1109/TSP.2012.2187286https://doi.org/10.1109/TSP.2012.2187286
Moradikia M, Samadi S, Cetin M, 2019. Joint SAR imaging and multi-feature decomposition from 2-D under-sampled data via low-rankness plus sparsity priors. IEEE Trans Comput Imag, 5(1):1-16. https://doi.org/10.1109/TCI.2018.2881530https://doi.org/10.1109/TCI.2018.2881530
Pan XY, Wang W, Feng DJ, et al., 2014. On deception jamming for countering bistatic ISAR based on sub-Nyquist sampling. IET Radar Sonar Nav, 8(3):173-179. https://doi.org/10.1049/iet-rsn.2013.0020https://doi.org/10.1049/iet-rsn.2013.0020
Rong JJ, Wang Y, Han T, 2019. Iterative optimization-based ISAR imaging with sparse aperture and its application in interferometric ISAR imaging. IEEE Sens J, 19(19):8681-8693. https://doi.org/10.1109/JSEN.2019.2923447https://doi.org/10.1109/JSEN.2019.2923447
Tai N, Cui KB, Wang C, et al., 2016. The design of a novel coherent noise jammer against LFM radar. IEICE Electr Expr, 13(21):2138-2149. https://doi.org/10.1587/elex.13.20160924https://doi.org/10.1587/elex.13.20160924
Wang C, Zhang QY, Hu JM, et al., 2022. An efficient algorithm based on CSA for THz stepped-frequency SAR imaging. IEEE Geosci Remote Sens Lett, 19:4006505. https://doi.org/10.1109/LGRS.2020.3039958https://doi.org/10.1109/LGRS.2020.3039958
Wang JJ, Feng DJ, Xu ZM, et al., 2021. Time-domain digital-coding active frequency selective surface absorber/reflector and its imaging characteristics. IEEE Trans Antenn Propag, 69(6):3322-3331. https://doi.org/10.1109/TAP.2020.3037757https://doi.org/10.1109/TAP.2020.3037757
Wang JJ, Feng DJ, Kong YM, et al., 2022. Imaging properties of nonperiodic time-varying active frequency selective surface. IEEE Trans Antenn Propag, 70(7):5884-5891. https://doi.org/10.1109/TAP.2022.3161385https://doi.org/10.1109/TAP.2022.3161385
Wang W, Pan XY, Liu YC, et al., 2014. Sub-Nyquist sampling jamming against ISAR with compressive sensing. IEEE Sens J, 14(9):3131-3136. https://doi.org/10.1109/JSEN.2014.2323978https://doi.org/10.1109/JSEN.2014.2323978
Wang XS, Liu JC, Zhang WM, et al., 2007. Mathematic principles of interrupted-sampling repeater jamming (ISRJ). Sci China Ser F Inform Sci, 50(1):113-123. https://doi.org/10.1007/s11432-007-2017-yhttps://doi.org/10.1007/s11432-007-2017-y
Wang Y, Bai XR, Zhou F, 2022. High-resolution inverse synthetic aperture radar imaging with sparse stepped-frequency chirp signals under low signal to noise ratio. J Electr Inform Technol, 44(3):1034-1043(in Chinese). https://doi.org/10.11999/JEIT210056https://doi.org/10.11999/JEIT210056
Wu QH, Liu J, Wang JJ, et al., 2018. Improved active echo cancellation against synthetic aperture radar based on nonperiodic interrupted sampling modulation. IEEE Sens J, 18(11):4453-4461. https://doi.org/10.1109/JSEN.2018.2824351https://doi.org/10.1109/JSEN.2018.2824351
Wu QH, Zhao F, Ai XF, et al., 2019. Two-dimensional blanket jamming against ISAR using nonperiodic ISRJ. IEEE Sens J, 19(11):4031-4038. https://doi.org/10.1109/JSEN.2019.2897363https://doi.org/10.1109/JSEN.2019.2897363
Xu G, Xing MD, Xia XG, et al., 2015. High-resolution inverse synthetic aperture radar imaging and scaling with sparse aperture. IEEE J Sel Top Appl Earth Obs Remote Sens, 8(8):4010-4027. https://doi.org/10.1109/JSTARS.2015.2439266https://doi.org/10.1109/JSTARS.2015.2439266
Xu LT, Feng DJ, Liu YC, et al., 2015. A three-stage active cancellation method against synthetic aperture radar. IEEE Sens J, 15(11):6173-6178. https://doi.org/10.1109/JSEN.2015.2453396https://doi.org/10.1109/JSEN.2015.2453396
Zhang L, Qiao ZJ, Xing MD, et al., 2011. High-resolution ISAR imaging with sparse stepped-frequency waveforms. IEEE Trans Geosci Remote Sens, 49(11):4630-4651. https://doi.org/10.1109/TGRS.2011.2151865https://doi.org/10.1109/TGRS.2011.2151865
Zhang Q, Zeng YS, He YQ, et al., 2008. Avian detection and identification with high-resolution radar. IEEE Radar Conf, p.1-6. https://doi.org/10.1109/radar.2008.4721116https://doi.org/10.1109/radar.2008.4721116
Zhao ZK, Zhou WB, Li H, 2021. LFM radar jamming technology based on non-integer order SSC blind frequency shift. J Electr Inform Technol, 43(10):2824-2831(in Chinese). https://doi.org/10.11999/JEIT200748https://doi.org/10.11999/JEIT200748
Zhou F, Tian XD, Wang Y, et al., 2021. High-resolution ISAR imaging under low SNR with sparse stepped-frequency chirp signals. IEEE Trans Geosci Remote Sens, 59(10):8338-8348. https://doi.org/10.1109/TGRS.2020.3045971https://doi.org/10.1109/TGRS.2020.3045971
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621