FOLLOWUS
1.School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2.College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
3.Shanghai Key Laboratory of Modern Optical System, Shanghai 200093, China
4.Key Laboratory of Biomedical Optical Technology and Devices of Ministry of Education, Shanghai 200093, China
5.Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 201210, China
†E-mail: xiaofei.qin@usst.edu.cn
‡Corresponding author
Published:0 October 2023,
Received:23 October 2022,
Accepted:2023-04-09
Scan QR Code
XIAOFEI QIN, WENKAI HU, CHEN XIAO, et al. Attention-based efficient robot grasp detection network. [J]. Frontiers of information technology & electronic engineering, 2023, 24(10): 1430-1444.
XIAOFEI QIN, WENKAI HU, CHEN XIAO, et al. Attention-based efficient robot grasp detection network. [J]. Frontiers of information technology & electronic engineering, 2023, 24(10): 1430-1444. DOI: 10.1631/FITEE.2200502.
为平衡抓取检测算法的推理速度和检测精度,本文提出一种编码器–解码器结构的像素级抓取检测神经网络,称为基于注意力的高效机器人抓取检测网络(AE-GDN)。在编码器阶段引入3个空间注意模块以增强细节信息,在解码器阶段引入3个通道注意模块以提取更多语义信息。采用多个轻量高效的DenseBlocks连接编码器和解码器,提高AE-GDN的特征建模能力。预测得到的抓取矩形框与标签抓取框之间的高交并比(IoU)值并不意味着高质量的抓取配置,但可能会导致碰撞。这是因为传统IoU损失计算方法将预测抓取框中心部分像素与夹爪附近像素视为同等重要。本文设计了一种新的基于沙漏形匹配机制的IoU损失计算方法,该方法可在高IoU和高质量抓取配置之间建立良好对应关系。AE-GDN在Cornell和Jacquard数据集上的准确率分别达到98.9%和96.6%。推理速度达到每秒43.5帧,参数仅约1.2×10
6
。本文提出的AE-GDN已实际部署在机械臂抓取系统中,并实现良好抓取性能。代码可在
https://github.com/robvincen/robot_gradet
https://github.com/robvincen/robot_gradet
获得。
To balance the inference speed and detection accuracy of a grasp detection algorithm
which are both important for robot grasping tasks
we propose an encoder–decoder structured pixel-level grasp detection neural network named the attention-based efficient robot grasp detection network (AE-GDN). Three spatial attention modules are introduced in the encoder stages to enhance the detailed information
and three channel attention modules are introduced in the decoder stages to extract more semantic information. Several lightweight and efficient DenseBlocks are used to connect the encoder and decoder paths to improve the feature modeling capability of AE-GDN. A high intersection over union (IoU) value between the predicted grasp rectangle and the ground truth does not necessarily mean a high-quality grasp configuration
but might cause a collision. This is because traditional IoU loss calculation methods treat the center part of the predicted rectangle as having the same importance as the area around the grippers. We design a new IoU loss calculation method based on an hourglass box matching mechanism
which will create good correspondence between high IoUs and high-quality grasp configurations. AE-GDN achieves the accuracy of 98.9% and 96.6% on the Cornell and Jacquard datasets
respectively. The inference speed reaches 43.5 frames per second with only about 1.2×10
6
parameters. The proposed AE-GDN has also been deployed on a practical robotic arm grasping system and performs grasping well. Codes are available at
https://github.com/robvincen/robot_gradet
https://github.com/robvincen/robot_gradet
.
机器人抓取检测注意力机制编码器–解码器神经网络
Robot grasp detectionAttention mechanismEncoder–decoderNeural network
Ainetter S, Fraundorfer F, 2021. End-to-end trainable deep neural network for robotic grasp detection and semantic segmentation from RGB. Proc IEEE Int Conf on Robotics and Automation, p.13452-13458. 10.1109/ICRA48506.2021.9561398https://doi.org/10.1109/ICRA48506.2021.9561398
Asif U, Bennamoun M, Sohel FA, 2017. RGB-D object recognition and grasp detection using hierarchical cascaded forests. IEEE Trans Rob, 33(3):547-564. 10.1109/TRO.2016.2638453https://doi.org/10.1109/TRO.2016.2638453
Asif U, Tang JB, Harrer S, 2018. GraspNet: an efficient convolutional neural network for real-time grasp detection for low-powered devices. Proc 27th Int Joint Conf on Artificial Intelligence, p.4875-4882.
Asif U, Tang JB, Harrer S, 2019. Densely supervised grasp detector (DSGD). Proc 33rd AAAI Conf on Artificial Intelligence, p.8085-8093. 10.1609/aaai.v33i01.33018085https://doi.org/10.1609/aaai.v33i01.33018085
Chen L, Huang PF, Meng ZJ, 2019. Convolutional multi-grasp detection using grasp path for RGBD images. Rob Auton Syst, 113:94-103. 10.1016/j.robot.2019.01.009https://doi.org/10.1016/j.robot.2019.01.009
Chen L, Huang PF, Li YH, et al., 2020. Detecting graspable rectangles of objects in robotic grasping. Int J Contr Autom Syst, 18(5):1343-1352. 10.1007/s12555-019-0186-2https://doi.org/10.1007/s12555-019-0186-2
Chu FJ, Xu RN, Vela PA, 2018a. Deep grasp: detection and localization of grasps with deep neural networks. https://arxiv.org/abs/1802.00520v2https://arxiv.org/abs/1802.00520v2
Chu FJ, Xu RN, Vela PA, 2018b. Real-world multiobject, multigrasp detection. IEEE Rob Autom Lett, 3(4):3355-3362. 10.1109/LRA.2018.2852777https://doi.org/10.1109/LRA.2018.2852777
Depierre A, Dellandréa E, Chen LM, 2018. Jacquard: a large scale dataset for robotic grasp detection. Proc IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.3511-3516. 10.1109/IROS.2018.8593950https://doi.org/10.1109/IROS.2018.8593950
Fang B, Long XM, Sun FC, et al., 2022. Tactile-based fabric defect detection using convolutional neural network with attention mechanism. IEEE Trans Instrum Meas, 71:5011309. 10.1109/TIM.2022.3165254https://doi.org/10.1109/TIM.2022.3165254
Ghazaei G, Laina I, Rupprecht C, et al., 2018. Dealing with ambiguity in robotic grasping via multiple predictions. Proc 14th Asian Conf on Computer Vision, p.38-55. 10.1007/978-3-030-20870-7_3https://doi.org/10.1007/978-3-030-20870-7_3
Guo D, Sun FC, Liu HP, et al., 2017. A hybrid deep architecture for robotic grasp detection. Proc IEEE Int Conf on Robotics and Automation, p.1609-1614. 10.1109/ICRA.2017.7989191https://doi.org/10.1109/ICRA.2017.7989191
Hara K, Vemulapalli R, Chellappa R, 2017. Designing deep convolutional neural networks for continuous object orientation estimation. https://arxiv.org/abs/1702.01499https://arxiv.org/abs/1702.01499
He KM, Zhang XY, Ren SQ, et al., 2016. Deep residual learning for image recognition. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.770-778. 10.1109/CVPR.2016.90https://doi.org/10.1109/CVPR.2016.90
Huang G, Liu Z, van der Maaten L, et al., 2017. Densely connected convolutional networks. Proc IEEE Conf on on Computer Vision and Pattern Recognition, p.4700-4708. 10.1109/CVPR.2017.243https://doi.org/10.1109/CVPR.2017.243
Jaderberg M, Simonyan K, Zisserman A, et al., 2015. Spatial transformer networks. Proc 28th Int Conf on Neural Information Processing Systems, p.2017-2025.
Jiang Y, Moseson S, Saxena A, 2011. Efficient grasping from RGBD images: learning using a new rectangle representation. Proc IEEE Int Conf on Robotics and Automation, p.3304-3311. 10.1109/ICRA.2011.5980145https://doi.org/10.1109/ICRA.2011.5980145
Karaoguz H, Jensfelt P, 2019. Object detection approach for robot grasp detection. Proc Int Conf on Robotics and Automation, p.4953-4959. 10.1109/ICRA.2019.8793751https://doi.org/10.1109/ICRA.2019.8793751
Krizhevsky A, Sutskever I, Hinton GE, 2012. ImageNet classification with deep convolutional neural networks. Proc 25th Int Conf on Neural Information Processing Systems, p.1097-1105.
Kumra S, Kanan C, 2017. Robotic grasp detection using deep convolutional neural networks. Proc IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.769-776. 10.1109/IROS.2017.8202237https://doi.org/10.1109/IROS.2017.8202237
Kumra S, Joshi S, Sahin F, 2020. Antipodal robotic grasping using generative residual convolutional neural network. Proc IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.9626-9633. 10.1109/IROS45743.2020.9340777https://doi.org/10.1109/IROS45743.2020.9340777
Lenz I, Lee H, Saxena A, 2015. Deep learning for detecting robotic grasps. Int J Rob Res, 34(4-5):705-724. 10.1177/0278364914549607https://doi.org/10.1177/0278364914549607
Liu FK, Sun F, Fang B, et al., 2023. Hybrid robotic grasping with a soft multimodal gripper and a deep multistage learning scheme. IEEE Trans Rob, 39(3):2379-2399. 10.1109/TRO.2023.3238910https://doi.org/10.1109/TRO.2023.3238910
Mahler J, Liang J, Niyaz S, et al., 2017. Dex-Net 2.0: deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics. https://arxiv.org/abs/1703.09312https://arxiv.org/abs/1703.09312
Morrison D, Corke P, Leitner J, 2018. Closing the loop for robotic grasping: a real-time, generative grasp synthesis approach. https://arxiv.org/abs/1804.05172https://arxiv.org/abs/1804.05172
Morrison D, Corke P, Leitner J, 2020. Learning robust, real-time, reactive robotic grasping. Int J Rob Res, 39(2-3):183-201. 10.1177/0278364919859066https://doi.org/10.1177/0278364919859066
Park D, Seo Y, Chun SY, 2020. Real-time, highly accurate robotic grasp detection using fully convolutional neural network with rotation ensemble module. Proc IEEE Int Conf on Robotics and Automation, p.9397-9403. 10.1109/ICRA40945.2020.9197002https://doi.org/10.1109/ICRA40945.2020.9197002
Pinto L, Gupta A, 2016. Supersizing self-supervision: learning to grasp from 50K tries and 700 robot hours. Proc IEEE Int Conf on Robotics and Automation, p.3406-3413. 10.1109/ICRA.2016.7487517https://doi.org/10.1109/ICRA.2016.7487517
Quigley M, Conley K, Gerkey BP, et al., 2009. ROS: an open-source robot operating system. Proc ICRA Workshop on Open Source Software, p.5.
Redmon J, Angelova A, 2015. Real-time grasp detection using convolutional neural networks. Proc IEEE Int Conf on Robotics and Automation, p.1316-1322. 10.1109/ICRA.2015.7139361https://doi.org/10.1109/ICRA.2015.7139361
Rezatofighi H, Tsoi N, Gwak J, et al., 2019. Generalized intersection over union: a metric and a loss for bounding box regression. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.658-666. 10.1109/CVPR.2019.00075https://doi.org/10.1109/CVPR.2019.00075
Song YN, Gao L, Li XY, et al., 2020. A novel robotic grasp detection method based on region proposal networks. Rob Comput Integr Manuf, 65:101963. 10.1016/j.rcim.2020.101963https://doi.org/10.1016/j.rcim.2020.101963
Wang Q, Fan Z, Seng WH, et al., 2022. Cloud-assisted cognition adaptation for service robots in changing home environments. Front Inform Technol Electron Eng, 23(2):246-257. 10.1631/FITEE.2000431https://doi.org/10.1631/FITEE.2000431
Wang Y, Zheng YT, Gao BY, et al., 2021. Double-dot network for antipodal grasp detection. Proc IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.4654-4661. 10.1109/IROS51168.2021.9636706https://doi.org/10.1109/IROS51168.2021.9636706
Wang ZC, Li ZQ, Wang B, et al., 2016. Robot grasp detection using multimodal deep convolutional neural networks. Adv Mech Eng, 8(9):1687814016668077. 10.1177/1687814016668077https://doi.org/10.1177/1687814016668077
Woo S, Park J, Lee JY, et al., 2018. CBAM: convolutional block attention module. Proc 15th European Conf on Computer Vision, p.3-19. 10.1007/978-3-030-01234-2_1https://doi.org/10.1007/978-3-030-01234-2_1
Zeiler MD, Fergus R, 2014. Visualizing and understanding convolutional networks. Proc 13th European Conf on Computer Vision, p.818-833. 10.1007/978-3-319-10590-1_53https://doi.org/10.1007/978-3-319-10590-1_53
Zhang HB, Lan XG, Bai ST, et al., 2019. RoI-based robotic grasp detection for object overlapping scenes. Proc IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.4768-4775. 10.1109/IROS40897.2019.8967869https://doi.org/10.1109/IROS40897.2019.8967869
Zhou XW, Lan XG, Zhang HB, et al., 2018. Fully convolutional grasp detection network with oriented anchor box. Proc IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.7223-7230.
Publicity Resources
Related Articles
Related Author
Related Institution