FOLLOWUS
1.School of Information Science and Engineering, Linyi University, Linyi 276000, China
2.School of Automation and Electrical Engineering, Linyi University, Linyi 276000, China
3.School of Mathematics and Statistics, Linyi University, Linyi 276000, China
‡ Corresponding authors
Received:21 July 2024,
Revised:10 October 2024,
Published:2025-06
Scan QR Code
Yu GUAN, Xiaoyu JIANG, Yanpeng ZHENG, et al. An optimized formula for the two-point resistance of a cobweb resistance network and its potential application[J]. Frontiers of information technology & electronic engineering, 2025, 26(6): 946-958.
Yu GUAN, Xiaoyu JIANG, Yanpeng ZHENG, et al. An optimized formula for the two-point resistance of a cobweb resistance network and its potential application[J]. Frontiers of information technology & electronic engineering, 2025, 26(6): 946-958. DOI: 10.1631/FITEE.2400613.
近年来,电阻网络的探索和应用范围显著扩大,求解电阻网络两点间的等效电阻一直是一个重要课题。本文重点优化了具有2
r
边界条件的
m
×
n
蛛网电阻网络的两点电阻计算公式。为提高两点间等效电阻的计算效率,利用切比雪夫多项式的最优逼近特性,结合双曲函数对公式进行优化,并简化推导过程。讨论了几种特殊情况下的等效电阻公式,并比较了优化前后等效电阻公式的计算效率。最后,通过势公式进行路径规划的创新尝试,提出一种基于蛛网势函数的启发式算法,用于机器人在有障碍物的蛛网环境中的路径规划。
In recent years
the exploration and application of resistance networks have expanded significantly
and solving the equivalent resistance between two points of a resistance network has been an important topic. In this paper
we focus on optimizing the formula for calculating the two-point resistance of an
m
×
n
cobweb resistance network with 2
r
boundary conditions. To improve the computational efficiency of the equivalent resistance between two points
the formula is optimized by using the optimal approximation property of Chebyshev polynomials in combination with hyperbolic functions
and the derivation process is simplified. We discuss the equivalent resistance formulas in several special cases and compare the computational efficiency of the equivalent resistance formulas before and after optimization. Finally
we make an innovative attempt at path planning through potential formulas and propose a heuristic algorithm based on cobweb potential function for robot path planning in a cobweb environment with obstacles.
Asad JH , 2013a . Exact evaluation of the resistance in an infinite face-centered cubic network . J Stat Phys , 150 ( 6 ): 1177 - 1182 . https://doi.org/10.1007/s10955-013-0716-x https://doi.org/10.1007/s10955-013-0716-x
Asad JH , 2013b . Infinite simple 3D cubic network of identical capacitors . Mod Phys Lett B , 27 ( 15 ): 1350112 . https://doi.org/10.1142/S0217984913501121 https://doi.org/10.1142/S0217984913501121
Asad JH , Diab AA , Hijjawi RS , et al. , 2013 . Infinite face-centered-cubic network of identical resistors: application to lattice Green’s function . Eur Phys J Plus , 128 ( 1 ): 2 . https://doi.org/10.1140/epjp/i2013-13002-8 https://doi.org/10.1140/epjp/i2013-13002-8
Chen JQ , Ji WY , Tan ZZ , 2024 . Electrical properties of a 2 × n non-regular hammock network . Indian J Phys , 98 ( 8 ): 2851 - 2860 . https://doi.org/10.1007/s12648-023-03027-w https://doi.org/10.1007/s12648-023-03027-w
Cserti J , Dávid G , Piróth A , 2002 . Perturbation of infinite networks of resistors . Am J Phys , 70 ( 2 ): 153 - 159 . https://doi.org/10.1119/1.1419104 https://doi.org/10.1119/1.1419104
Cserti J , Széchenyi G , Dávid G , 2011 . Uniform tiling with electrical resistors . J Phys A Math Theor , 44 ( 21 ): 215201 . https://doi.org/10.1088/1751-8113/44/21/215201 https://doi.org/10.1088/1751-8113/44/21/215201
Essam JW , Wu FY , 2009 . The exact evaluation of the corner-to-corner resistance of an M × N resistor network: asymptotic expansion . J Phys A Math Theor , 42 ( 2 ): 025205 . https://doi.org/10.1088/1751-8113/42/2/025205 https://doi.org/10.1088/1751-8113/42/2/025205
Essam JW , Tan ZZ , Wu FY , 2014 . Resistance between two nodes in general position on an m × n fan network . Phys Rev E , 90 ( 3 ): 032130 . https://doi.org/10.1103/PhysRevE.90.032130 https://doi.org/10.1103/PhysRevE.90.032130
Essam JW , Izmailyan NS , Kenna R , et al. , 2015 . Comparison of methods to determine point-to-point resistance in nearly rectangular networks with application to a ‘hammock’ network . R Soc Open Sci , 2 ( 4 ): 140420 . https://doi.org/10.1098/rsos.140420 https://doi.org/10.1098/rsos.140420
Ferri G , Antonini G , 2007 . Ladder-network-based model for interconnects and transmission lines time delay and cutoff frequency determination . J Circ Syst Comp , 16 ( 4 ): 489 - 505 . https://doi.org/10.1142/S0218126607003794 https://doi.org/10.1142/S0218126607003794
Fu YR , Jiang XY , Jiang ZL , et al. , 2020a . Inverses and eigenpairs of tridiagonal Toeplitz matrix with opposite-bordered rows . J Appl Anal Comput , 10 ( 4 ): 1599 - 1613 . https://doi.org/10.11948/20190287 https://doi.org/10.11948/20190287
Fu YR , Jiang XY , Jiang ZL , et al. , 2020b . Properties of a class of perturbed Toeplitz periodic tridiagonal matrices . Comput Appl Math , 39 ( 3 ): 146 . https://doi.org/10.1007/s40314-020-01171-1 https://doi.org/10.1007/s40314-020-01171-1
Giordano S , 2007 . Two-dimensional disordered lattice networks with substrate . Phys A , 375 ( 2 ): 726 - 740 . https://doi.org/10.1016/j.physa.2006.09.026 https://doi.org/10.1016/j.physa.2006.09.026
Guttmann AJ , 2010 . Lattice Green’s functions in all dimensions . J Phys A Math Theor , 43 ( 30 ): 305205 . https://doi.org/10.1088/1751-8113/43/30/305205 https://doi.org/10.1088/1751-8113/43/30/305205
Hadad Y , Soric JC , Khanikaev AB , et al. , 2018 . Self-induced topological protection in nonlinear circuit arrays . Nat Electron , 1 ( 3 ): 178 - 182 . https://doi.org/10.1038/s41928-018-0042-z https://doi.org/10.1038/s41928-018-0042-z
Hijjawi RS , Asad JH , Sakaji AJ , et al. , 2008 . Infinite simple 3D cubic lattice of identical resistors (two missing bonds) . Eur Phys J Appl Phys , 41 ( 2 ): 111 - 114 . https://doi.org/10.1051/epjap:2008015 https://doi.org/10.1051/epjap:2008015
Hu Q , Zheng B , 2023 . An efficient Takagi–Sugeno fuzzy zeroing neural network for solving time-varying Sylvester equation . IEEE Trans Fuzzy Syst , 31 ( 7 ): 2401 - 2411 . https://doi.org/10.1109/TFUZZ.2022.3225630 https://doi.org/10.1109/TFUZZ.2022.3225630
Izmailian NS , Huang MC , 2010 . Asymptotic expansion for the resistance between two maximally separated nodes on an M by N resistor network . Phys Rev E , 82 ( 1 ): 011125 . https://doi.org/10.1103/PhysRevE.82.011125 https://doi.org/10.1103/PhysRevE.82.011125
Izmailian NS , Kenna R , 2014 . A generalised formulation of the Laplacian approach to resistor networks . J Stat Mech Theory Exp , 9 : P09016 . https://doi.org/10.1088/1742-5468/2014/09/P09016 https://doi.org/10.1088/1742-5468/2014/09/P09016
Izmailian NS , Kenna R , 2015 . The two-point resistance of fan networks . Chin J Phys , 53 ( 1 ): 126 - 136 . https://doi.org/10.6122/CJP.20141020A https://doi.org/10.6122/CJP.20141020A
Izmailian NS , Kenna R , Wu FY , 2014 . The two-point resistance of a resistor network: a new formulation and application to the cobweb network . J Phys A Math Theor , 47 ( 3 ): 035003 . https://doi.org/10.1088/1751-8113/47/3/035003 https://doi.org/10.1088/1751-8113/47/3/035003
Ji YX , Ni LT , Zhao C , et al. , 2023 . Tripfield: a 3D potential field model and its applications to local path planning of autonomous vehicles . IEEE Trans Intell Transp Syst , 24 ( 3 ): 3541 - 3554 . https://doi.org/10.1109/TITS.2022.3231259 https://doi.org/10.1109/TITS.2022.3231259
Jiang XY , Zhang GJ , Zheng YP , et al. , 2024 . Explicit potential function and fast algorithm for computing potentials in α × β conic surface resistor network . Expert Syst Appl , 238 : 122157 . https://doi.org/10.1016/j.eswa.2023.122157 https://doi.org/10.1016/j.eswa.2023.122157
Jiang ZL , Wang WP , Zheng YP , et al. , 2019 . Interesting explicit expressions of determinants and inverse matrices for Foeplitz and Loeplitz matrices . Mathematics , 7 ( 10 ): 939 . https://doi.org/10.3390/math7100939 https://doi.org/10.3390/math7100939
Jiang ZL , Zhou YF , Jiang XY , et al. , 2023 . Analytical potential formulae and fast algorithm for a horn torus resistor network . Phys Rev E , 107 ( 4 ): 044123 . https://doi.org/10.1103/PhysRevE.107.044123 https://doi.org/10.1103/PhysRevE.107.044123
Jin L , Qi YM , Luo X , et al. , 2022a . Distributed competition of multi-robot coordination under variable and switching topologies . IEEE Trans Autom Sci Eng , 19 ( 4 ): 3575 - 3586 . https://doi.org/10.1109/TASE.2021.3126385 https://doi.org/10.1109/TASE.2021.3126385
Jin L , Zheng X , Luo X , 2022b . Neural dynamics for distributed collaborative control of manipulators with time delays . IEEE/CAA J Autom Sin , 9 ( 5 ): 854 - 863 . https://doi.org/10.1109/JAS.2022.105446 https://doi.org/10.1109/JAS.2022.105446
Kirchhoff G , 1847 . Ueber die auflösung der gleichungen, auf welche man bei der untersuchung der linearen vertheilung galvanischer ströme geführt wird . Ann Phys , 148 ( 12 ): 497 - 508 (in German) . https://doi.org/10.1002/andp.18471481202 https://doi.org/10.1002/andp.18471481202
Klein DJ , 2010 . Centrality measure in graphs . J Math Chem , 47 ( 4 ): 1209 - 1223 . https://doi.org/10.1007/s10910-009-9635-0 https://doi.org/10.1007/s10910-009-9635-0
Klein DJ , Randić M , 1993 . Resistance distance . J Math Chem , 12 ( 1 ): 81 - 95 . https://doi.org/10.1007/BF01164627 https://doi.org/10.1007/BF01164627
Kook W , 2011 . Combinatorial Green’s function of a graph and applications to networks . Adv Appl Math , 46 ( 1-4 ): 417 - 423 . https://doi.org/10.1016/j.aam.2010.10.006 https://doi.org/10.1016/j.aam.2010.10.006
Kulathunga G , 2022 . A reinforcement learning based path planning approach in 3D environment . Proc Comput Sci , 212 : 152 - 160 . https://doi.org/10.1016/j.procs.2022.10.217 https://doi.org/10.1016/j.procs.2022.10.217
Liu YJ , Meirer F , Krest CM , et al. , 2016 . Relating structure and composition with accessibility of a single catalyst particle using correlative 3-dimensional micro-spectroscopy . Nat Commun , 7 ( 1 ): 12634 . https://doi.org/10.1038/ncomms12634 https://doi.org/10.1038/ncomms12634
Luo XL , Tan ZZ , 2023 . Fractional circuit network theory with n-V-structure . Phys Scr , 98 ( 4 ): 045224 . https://doi.org/10.1088/1402-4896/acc491 https://doi.org/10.1088/1402-4896/acc491
Mahulea C , Kloetzer M , González R , 2020 . Path Planning of Cooperative Mobile Robots Using Discrete Event Models . Wiley-IEEE Press , Piscataway, USA . https://doi.org/10.1002/9781119486305 https://doi.org/10.1002/9781119486305
Mason JC , Handscomb DC , 2002 . Chebyshev Polynomials . Chapman and Hall/CRC , New York, USA , p. 360 . https://doi.org/10.1201/9781420036114 https://doi.org/10.1201/9781420036114
Mazaheri H , Goli S , Nourollah A , 2024 . Path planning in three-dimensional space based on butterfly optimization algorithm . Sci Rep , 14 ( 1 ): 2332 . https://doi.org/10.1038/s41598-024-52750-9 https://doi.org/10.1038/s41598-024-52750-9
Meng QY , Jiang XY , Jiang ZL , 2021 . Interesting determinants and inverses of skew Loeplitz and Foeplitz matrices . J Appl Anal Comput , 11 ( 6 ): 2947 - 2958 . https://doi.org/10.11948/20210070 https://doi.org/10.11948/20210070
Meng QY , Zheng YP , Jiang ZL , 2022a . Determinants and inverses of weighted Loeplitz and weighted Foeplitz matrices and their applications in data encryption . J Appl Math Comput , 68 ( 6 ): 3999 - 4015 .
Meng QY , Zheng YP , Jiang ZL , 2022b . Exact determinants and inverses of (2,3,3)-Loeplitz and (2,3,3)-Foeplitz matrices . Comp Appl math , 41 ( 1 ): 35 . https://doi.org/10.1007/s40314-021-01738-6 https://doi.org/10.1007/s40314-021-01738-6
Meng X , Jiang XY , Zheng YP , et al. , 2024 . A novel formula for representing the equivalent resistance of the m × n cylindrical resistor network . Sci Rep , 14 : 21254 . https://doi.org/10.1038/s41598-024-72196-3 https://doi.org/10.1038/s41598-024-72196-3
Owaidat MQ , Hijjawi RS , Khalifeh JM , 2012 . Network with two extra interstitial resistors . Int J Theor Phys , 51 ( 10 ): 3152 - 3159 . https://doi.org/10.1007/s10773-012-1196-5 https://doi.org/10.1007/s10773-012-1196-5
Pan ZH , Zhang CX , Xia YQ , et al. , 2022 . An improved artificial potential field method for path planning and formation control of the multi-UAV systems . IEEE Trans Circ Syst II Express Briefs , 69 ( 3 ): 1129 - 1133 . https://doi.org/10.1109/TCSII.2021.3112787 https://doi.org/10.1109/TCSII.2021.3112787
Pennetta C , Alfinito E , Reggiani L , et al. , 2004 . Biased resistor network model for electromigration failure and related phenomena in metallic lines . Phys Rev B , 70 ( 17 ): 174305 . https://doi.org/10.1103/PhysRevB.70.174305 https://doi.org/10.1103/PhysRevB.70.174305
Rhazaoui K , Cai Q , Adjiman CS , et al. , 2013 . Towards the 3D modeling of the effective conductivity of solid oxide fuel cell electrodes: I. model development . Chem Eng Sci , 99 : 161 - 170 . https://doi.org/10.1016/j.ces.2013.05.030 https://doi.org/10.1016/j.ces.2013.05.030
Shi Y , Jin L , Li S , et al. , 2022 . Novel discrete-time recurrent neural networks handling discrete-form time-variant multi-augmented Sylvester matrix problems and manipulator application . IEEE Trans Neur Netw Learn Syst , 33 ( 2 ): 587 - 599 . https://doi.org/10.1109/TNNLS.2020.3028136 https://doi.org/10.1109/TNNLS.2020.3028136
Sun ZB , Wang G , Jin L , et al. , 2022 . Noise-suppressing zeroing neural network for online solving time-varying matrix square roots problems: a control-theoretic approach . Expert Syst Appl , 192 : 116272 . https://doi.org/10.1016/j.eswa.2021.116272 https://doi.org/10.1016/j.eswa.2021.116272
Tan ZZ , 2017 . Recursion-transform method and potential formulae of the m × n cobweb and fan networks . Chin Phys B , 26 ( 9 ): 090503 . https://doi.org/10.1088/1674-1056/26/9/090503 https://doi.org/10.1088/1674-1056/26/9/090503
Tan ZZ , 2022 . Resistance theory for two classes of n -periodic networks . Eur Phys J Plus , 137 ( 5 ): 546 . https://doi.org/10.1140/epjp/s13360-022-02750-3 https://doi.org/10.1140/epjp/s13360-022-02750-3
Tan ZZ , 2023a . Electrical property of an m × n apple surface network . Results Phys , 47 : 106361 . https://doi.org/10.1016/j.rinp.2023.106361 https://doi.org/10.1016/j.rinp.2023.106361
Tan ZZ , 2023b . Theory of an m × n apple surface network with special boundary . Commun Theor Phys , 75 ( 6 ): 065701 . https://doi.org/10.1088/1572-9494/accb82 https://doi.org/10.1088/1572-9494/accb82
Tan ZZ , Fang JH , 2015 . Two-point resistance of a cobweb network with a 2 r boundary . Commun Theor Phys , 63 ( 1 ): 36 . https://doi.org/10.1088/0253-6102/63/1/07 https://doi.org/10.1088/0253-6102/63/1/07
Tan ZZ , Tan Z , 2020a . The basic principle of m × n resistor networks . Commun Theor Phys , 72 ( 5 ): 055001 . https://doi.org/10.1088/1572-9494/ab7702 https://doi.org/10.1088/1572-9494/ab7702
Tan ZZ , Tan Z , 2020b . Electrical properties of m × n cylindrical network . Chin Phys B , 29 ( 8 ): 080503 . https://doi.org/10.1088/1674-1056/ab96a7 https://doi.org/10.1088/1674-1056/ab96a7
Tan ZZ , Tan Z , 2020c . Electrical properties of an m × n rectangular network . Phys Scr , 95 ( 3 ): 035226 . https://doi.org/10.1088/1402-4896/ab5977 https://doi.org/10.1088/1402-4896/ab5977
Tan ZZ , Zhou L , Yang JH , 2013 . The equivalent resistance of a 3 × n cobweb network and its conjecture of an m × n cob web network . J Phys A Math Theor , 46 ( 19 ): 195202 . https://doi.org/10.1088/1751-8113/46/19/195202 https://doi.org/10.1088/1751-8113/46/19/195202
Tzeng WJ , Wu FY , 2006 . Theory of impedance networks: the two-point impedance and LC resonances . J Phys A Math Gen , 39 ( 27 ): 8579 . https://doi.org/10.1088/0305-4470/39/27/002 https://doi.org/10.1088/0305-4470/39/27/002
Udrea G , 1996 . A note on the sequence ( W n ) n ≥0 of A.F. Horadam . Port Math , 53 ( 2 ): 143 - 155 .
Uğur A , 2008 . Path planning on a cuboid using genetic algorithms . Inform Sci , 178 ( 16 ): 3275 - 3287 . https://doi.org/10.1016/j.ins.2008.04.005 https://doi.org/10.1016/j.ins.2008.04.005
Wang JJ , Zheng YP , Jiang ZL , 2023 . Norm equalities and inequalities for tridiagonal perturbed Toeplitz operator matrices . J Appl Anal Comput , 13 ( 2 ): 671 - 683 . https://doi.org/10.11948/20210489 https://doi.org/10.11948/20210489
Wang R , Jiang XY , Zheng YP , et al. , 2024 . New equivalent resistance formula of m × n rectangular resistor network represented by Chebyshev polynomials . Sci Rep , 14 : 29461 . https://doi.org/10.1038/s41598-024-80899-w https://doi.org/10.1038/s41598-024-80899-w
Wang XZ , Che ML , Wei YM , 2017 . Complex-valued neural networks for the Takagi vector of complex symmetric matrices . Neurocomputing , 223 : 77 - 85 . https://doi.org/10.1016/j.neucom.2016.10.034 https://doi.org/10.1016/j.neucom.2016.10.034
Wei YL , Jiang XY , Jiang ZL , et al. , 2019a . Determinants and inverses of perturbed periodic tridiagonal Toeplitz matrices . Adv Differ Equ , 2019 ( 1 ): 410 . https://doi.org/10.1186/s13662-019-2335-6 https://doi.org/10.1186/s13662-019-2335-6
Wei YL , Zheng YP , Jiang ZL , et al. , 2019b . A study of determinants and inverses for periodic tridiagonal Toeplitz matrices with perturbed corners involving Mersenne numbers . Mathematics , 7 ( 10 ): 893 . https://doi.org/10.3390/math7100893 https://doi.org/10.3390/math7100893
Wei YL , Jiang XY , Jiang ZL , et al. , 2020 . On inverses and eigenpairs of periodic tridiagonal Toeplitz matrices with perturbed corners . J Appl Anal Comput , 10 ( 1 ): 178 - 191 . https://doi.org/10.11948/20190105 https://doi.org/10.11948/20190105
Wei YL , Zheng YP , Jiang ZL , et al. , 2022 . The inverses and eigenpairs of tridiagonal Toeplitz matrices with perturbed rows . J Appl Math Comput , 68 ( 1 ): 623 - 636 . https://doi.org/10.1007/s12190-021-01532-x https://doi.org/10.1007/s12190-021-01532-x
Wu FY , 2004 . Theory of resistor networks: the two-point resistance . J Phys A Math Gen , 37 ( 26 ): 6653 - 6673 . https://doi.org/10.1088/0305-4470/37/26/004 https://doi.org/10.1088/0305-4470/37/26/004
Wu WQ , Zhang YN , 2024 . Zeroing neural network with coefficient functions and adjustable parameters for solving time-variant Sylvester equation . IEEE Trans Neur Netw Learn Syst , 35 ( 5 ): 6757 - 6766 . https://doi.org/10.1109/TNNLS.2022.3212869 https://doi.org/10.1109/TNNLS.2022.3212869
Xu GY , Eleftheriades GV , Hum SV , 2021 . Analysis and design of general printed circuit board metagratings with an equivalent circuit model approach . IEEE Trans Antenn Propagat , 69 ( 8 ): 4657 - 4669 . https://doi.org/10.1109/TAP.2021.3060084 https://doi.org/10.1109/TAP.2021.3060084
Xue JM , Li J , Chen JY , et al. , 2021 . Wall-climbing robot path planning for cylindrical storage tank inspection based on modified A-star algorithm . IEEE Far East NDT New Technology & Application Forum , p. 191 - 195 . https://doi.org/10.1109/FENDT54151.2021.9749634 https://doi.org/10.1109/FENDT54151.2021.9749634
Yang YJ , Klein DJ , 2013 . A recursion formula for resistance distances and its applications . Discret Appl Math , 161 ( 16-17 ): 2702 - 2715 . https://doi.org/10.1016/j.dam.2012.07.015 https://doi.org/10.1016/j.dam.2012.07.015
Yu ZH , Yuan J , Li YS , et al. , 2023 . A path planning algorithm for mobile robot based on water flow potential field method and beetle antennae search algorithm . Comput Electr Eng , 109 : 108730 . https://doi.org/10.1016/j.compeleceng.2023.108730 https://doi.org/10.1016/j.compeleceng.2023.108730
Zhang D , Yang B , Tan JP , et al. , 2021 . Impact damage localization and mode identification of CFRPs panels using an electric resistance change method . Compos Struct , 276 : 114587 . https://doi.org/10.1016/j.compstruct.2021.114587 https://doi.org/10.1016/j.compstruct.2021.114587
Zhao WJ , Zheng YP , Jiang XY , et al. , 2023 . Two optimized novel potential formulas and numerical algorithms for m × n cobweb and fan resistor networks . Sci Rep , 13 ( 1 ): 12417 . https://doi.org/10.1038/s41598-023-39478-8 https://doi.org/10.1038/s41598-023-39478-8
Zhou YF , Zheng YP , Jiang XY , et al. , 2022 . Fast algorithm and new potential formula represented by Chebyshev polynomials for an m × n globe network . Sci Rep , 12 ( 1 ): 21260 . https://doi.org/10.1038/s41598-022-25724-y https://doi.org/10.1038/s41598-022-25724-y
Zhou YF , Jiang XY , Zheng YP , et al. , 2023 . Exact novel formulas and fast algorithm of potential for a hammock resistor network . AIP Adv , 13 ( 9 ): 095127 . https://doi.org/10.1063/5.0171330 https://doi.org/10.1063/5.0171330
Zhu ZX , Yin Y , Lü HG , 2023 . Automatic collision avoidance algorithm based on route-plan-guided artificial potential field method . Ocean Eng , 271 : 113737 . https://doi.org/10.1016/j.oceaneng.2023.113737 https://doi.org/10.1016/j.oceaneng.2023.113737
Publicity Resources
Related Articles
Related Author
Related Institution