Frontiers of Information Technology & Electronic EngineeringVol. 15, Issue 7, Pages: 584-591(2014)
Affiliations:
Center of Excellence on Soft Computing and Intelligent Information Processing, Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
FARNAZ SABAHI, M.-R. AKBARZADEH-T. A framework for analysis of extended fuzzy logic. [J]. Frontiers of information technology & electronic engineering, 2014, 15(7): 584-591.
DOI:
FARNAZ SABAHI, M.-R. AKBARZADEH-T. A framework for analysis of extended fuzzy logic. [J]. Frontiers of information technology & electronic engineering, 2014, 15(7): 584-591. DOI: 10.1631/jzus.C1300217.
A framework for analysis of extended fuzzy logicEnhanced Publication
We address a framework for the analysis of extended fuzzy logic (FLe) and elaborate mainly the key characteristics of FLe by proving several qualification theorems and proposing a new mathematical tool named the A-granule. Specifically
we reveal that within FLe a solution in the presence of incomplete information approaches the one gained by complete information. It is also proved that the answers and their validities have a structural isomorphism within the same context. This relationship is then used to prove the representation theorem that addresses the rationality of FLe-based reasoning. As a consequence of the developed theoretical description of FLe
we assert that in order to solve a problem
having complete information is not a critical need; however
with more information
the answers achieved become more specific. Furthermore
reasoning based on FLe has the advantage of being computationally less expensive in the analysis of a given problem and is faster.
R.A. Aliev, , , A.V. Alizadeh, , , B.G. Guirimov. . Unpre-cisiated information-based approach to decision making with imperfect information. . Proc. 9th Int. Conf. on Application of Fuzzy Systems and Soft Computing, , 2010. . p.387--397. . ..
D. Dubois, , , H. Prade. . What are fuzzy rules and how to use them. . Fuzzy Sets Syst, , 1996. . 84((2):):169--185. . DOI:10.1016/0165-0114(96)00066-8http://doi.org/10.1016/0165-0114(96)00066-8..
D. Dubois, , , H. Prade. . Gradualness, uncertainty and bipolarity: making sense of fuzzy sets. . Fuzzy Sets Syst, , 2012. . 1923--24. . DOI:10.1016/j.fss.2010.11.007http://doi.org/10.1016/j.fss.2010.11.007..
P. Hájek. . What is mathematical fuzzy logic. . Fuzzy Sets Syst, , 2006. . 157((5):):597--603. . DOI:10.1016/j.fss.2005.10.004http://doi.org/10.1016/j.fss.2005.10.004..
B.M. Imran, , , M.M.S. Beg. . Elements of sketching with words. . Int. J. Gran. Comput. Rough Sets Intell. Syst, , 2011. . 2((2):):166--178. . DOI:10.1504/IJGCRSIS.2011.043371http://doi.org/10.1504/IJGCRSIS.2011.043371..
B.M. Imran, , , M.M.S. Beg. . Fuzzy identification of geometric shapes. In: Meghanathan, N., Chaki, N., Nagamalai, D. (Eds.), Advances in Computer Science and Information Technology. . Springer Berlin Heidelberg, , 2012. . p.269--279. . ..
V.A. Niskanen. . Application of Zadeh's impossibility principle to approximate explanation. . IFSA/EUSFLAT Conf, , 2009. . p.561--567. . ..
V.A. Niskanen. . A meta-level approach to approximate probability. In: Setchi, R., Jordanov, I., Howlett, R.J., et al. (Eds.), Knowledge-based and Intelligent Information and Engineering Systems. . Springer Berlin Heidelberg, , 2010. . p.116--123. . DOI:10.1007/978-3-642-15384-6_13http://doi.org/10.1007/978-3-642-15384-6_13..
V.A. Niskanen. . Prospects for applying fuzzy extended logic to scientific reasoning. In: Kantola, J., Karwowski, W. (Eds.), Knowledge Service Engineering Handbook. . CRC Press, , 2012. . p.279--306. . DOI:10.1201/b12043-15http://doi.org/10.1201/b12043-15..
V.A. Niskanen. . On examination of medical data with approximate reasoning. In: Seising, R., Tabacchi, M.E. (Eds.), Fuzziness and Medicine: Philosophical Reflections and Application Systems in Health Care. . Springer Berlin Heidelberg, , 2013. . p.269--290. . ..
I. Perfilieva. . Fuzzy transforms: theory and applications. . Fuzzy Sets Syst, , 2006. . 157((8):):993--1023. . DOI:10.1016/j.fss.2005.11.012http://doi.org/10.1016/j.fss.2005.11.012..
F. Sabahi, , , M.R. Akbarzadeh-T. . A qualified descrip-tion of extended fuzzy logic. . Inform. Sci, , 2013. . 24460--74. . DOI:10.1016/j.ins.2013.03.020http://doi.org/10.1016/j.ins.2013.03.020..
F. Sabahi, , , M.R. Akbarzadeh-T. . Comparative evaluation of risk factors in coronary heart disease based on fuzzy probability-validity modeling. . ZUMS J, , 2014a. . 22((91):):73--83. . ..
F. Sabahi, , , M.R. Akbarzadeh-T. . Introducing validity in fuzzy probability for judicial decision-making. . Int. J. Approx. Reason, , 2014b. . 55((6):):1383--1403. . DOI:10.1016/j.ijar.2013.12.003http://doi.org/10.1016/j.ijar.2013.12.003..
J.B. Tolosa, , , S. Guadarrama. . Collecting fuzzy percep-tions from non-expert users. . IEEE Int. Conf. on Fuzzy Systems, , 2010. . p.1--8. . DOI:10.1109/FUZZY.2010.5584816http://doi.org/10.1109/FUZZY.2010.5584816..
G. Wilke. . Approximate geometric reasoning with extended geographic objects. . Proc. Workshop on Quality, Scale and Analysis Aspects of City Models, , 2009. . p.102--106. . ..
L.A. Zadeh. . Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. . Fuzzy Sets Syst, , 1997. . 90((2):):111--127. . DOI:10.1016/S0165-0114(97)00077-8http://doi.org/10.1016/S0165-0114(97)00077-8..