FOLLOWUS
1.Division of Theory of Machines and Robots, Warsaw University of Technology, Warsaw 00-661, Poland
2.Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova 16163, Italy
3.Department of Electrical Engineering, COMSATS Institute of Information Technology, Islamabad 44000, Pakistan
4.Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, Cassino 03043, Italy
‡Corresponding Author
纸质出版日期:2015-02,
收稿日期:2014-05-16,
修回日期:2014-12-30,
录用日期:2014-10-01
Scan QR Code
自主轮式移动机器人路径追踪的纵向与侧向滑动控制[J]. 信息与电子工程前沿(英文), 2015,16(2):166-172.
KHAN HAMZA, IQBAL JAMSHED, BAIZID KHELIFA, et al. Longitudinal and lateral slip control of autonomous wheeled mobile robot for trajectory tracking*. [J]. Frontiers of information technology & electronic engineering, 2015, 16(2): 166-172.
自主轮式移动机器人路径追踪的纵向与侧向滑动控制[J]. 信息与电子工程前沿(英文), 2015,16(2):166-172. DOI: 10.1631/FITEE.1400183.
KHAN HAMZA, IQBAL JAMSHED, BAIZID KHELIFA, et al. Longitudinal and lateral slip control of autonomous wheeled mobile robot for trajectory tracking*. [J]. Frontiers of information technology & electronic engineering, 2015, 16(2): 166-172. DOI: 10.1631/FITEE.1400183.
目的
2
轮式机器人广泛应用于自主移动机器人研究。已有文献大多数将机器人抽象成具备非完整约束的机械模型,这一假设条件仅在机器人低速运动时成立。本文考虑四轮机器人,同时考虑其纵向和侧向滑动控制,与实际情况更贴近。
创新
2
针对轮式移动机器人模型,同时考虑纵向和侧向滑动分量。
方法
2
设计纵向滑行控制策略(图1)。改变自然频率(图4)、阻尼和质量(图5)、轮子半径(图6)分别测试控制器响应,最终获取最优控制参数(表2)。
结论
2
仿真结果验证所提控制策略的有效性。通过测试选择合适参数使控制器实现快速平滑响应。所设计的控制器对轮子滑动扰动不作限制性假设,即可实现误差指数收敛。
This research formulates a path-following control problem subjected to wheel slippage and skid and solves it using a logic-based control scheme for a wheeled mobile robot (WMR). The novelty of the proposed scheme lies in its methodology that considers both longitudinal and lateral slip components. Based on the derived slip model
the controller for longitudinal motion slip has been synthesized. Various control parameters have been studied to investigate their effects on the performance of the controller resulting in selection of their optimum values. The designed controller for lateral slip or skid is based on the proposed side friction model and skid check condition. Considering a car-like WMR
simulation results demonstrate the effectiveness of the proposed control scheme. The robot successfully followed the desired circular trajectory in the presence of wheel slippage and skid. This research finds its potential in various applications involving WMR navigation and control.
机器人建模机器人巡航滑动及防滑控制轮式移动机器人
Robot modelingRobot navigationSlip and skid controlWheeled mobile robots
LR Adrian, L Ribickis. Fuzzy logic analysis of photovoltaic data for obstacle avoidance or mapping robot. Elektron Elektrotech, 2013. 19(1):3-6. DOI:10.5755/j01.eee.19.1.3243http://doi.org/10.5755/j01.eee.19.1.3243.
O Ahmad, I Ullah, J Iqbal. A multi-robot educational and research framework. Int J Acad Res, 2014. 6(2):217-222. .
OA Ani, H Xu, YP Shen, 等. Modeling and multiobjective optimization of traction performance for autonomous wheeled mobile robot in rough terrain. J Zhejiang Univ-Sci C (Comput & Electron), 2013. 14(1):11-29. DOI:10.1631/jzus.C12a0200http://doi.org/10.1631/jzus.C12a0200.
J Dakhlallah, S Glaser, S Mammar. Tire-road forces estimation using extended Kalman filter and sideslip angle evaluation. 2008. American Control Conf.. 4597-4602. DOI:10.1109/ACC.2008.4587220http://doi.org/10.1109/ACC.2008.4587220.
L Ding, H Gao, Z Deng, 等. Wheel slip-sinkage and its prediction model of lunar rover. J Cent South Univ Technol, 2010. 17(1):129-135. DOI:10.1007/s11771-010-0021-7http://doi.org/10.1007/s11771-010-0021-7.
L Ding, H Gao, Z Deng, 等. Experimental study and analysis on driving wheels’ performance for planetary exploration rovers moving in deformable soil. J Terramech, 2011. 48(1):27-45. DOI:10.1016/j.jterra.2010.08.001http://doi.org/10.1016/j.jterra.2010.08.001.
L Ding, H Gao, Z Deng, 等. Longitudinal slip versus skid of planetary rovers’ wheels traversing on deformable slopes. 2013. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. 2842-2848. DOI:10.1109/IROS.2013.6696758http://doi.org/10.1109/IROS.2013.6696758.
H Gao, J Guo, L Ding, 等. Longitudinal skid model for wheels of planetary exploration rovers based on terramechanics. J Terramech, 2013. 50(5-6):327-343. DOI:10.1016/j.jterra.2013.10.001http://doi.org/10.1016/j.jterra.2013.10.001.
J Iqbal, RU Islam, H Khan. Modeling and analysis of a 6 DOF robotic arm manipulator. Can J Electr Electron Eng, 2012. 3(6):300-306. .
J Iqbal, SR un Nabi, A Khan, 等. A novel track-drive mobile robotic framework for conducting projects on robotics and control systems. Life Sci J, 2013. 10(3):130-137. .
G Ishigami, A Miwa, K Nagatani, 等. Terramechanics-based model for steering maneuver of planetary exploration rovers on loose soil. J Field Robot, 2007. 24(3):233-250. DOI:10.1002/rob.20187http://doi.org/10.1002/rob.20187.
J Krejsa, S Vechet. Infrared beacons based localization of mobile robot. Elektron Elektrotech, 2012. 117(1):17-22. DOI:10.5755/j01.eee.117.1.1046http://doi.org/10.5755/j01.eee.117.1.1046.
BT Kulakowski. Mathematical model of skid resistance as a function of speed. Pavement Management: Data Collection, Analysis, and Storage, 1991. :USATransportation Research Board, 26-33. .
YP Li, T Zielinska, VMH Ang, 等. Wheel-ground interaction modelling and torque distribution for a redundant mobile robot. 2006. Proc. IEEE Int. Conf. on Robotics and Automation. 3362-3367. DOI:10.1109/ROBOT.2006.1642215http://doi.org/10.1109/ROBOT.2006.1642215.
S Manzoor, RU Islam, A Khalid, 等. An open-source multi-DOF articulated robotic educational platform for autonomous object manipulation. Robot Comput-Integr Manuf, 2014. 30(3):351-362. DOI:10.1016/j.rcim.2013.11.003http://doi.org/10.1016/j.rcim.2013.11.003.
R Pusca, Y Ait-Amirat, A Berthon, 等. Modeling and simulation of a traction control algorithm for an electric vehicle with four separate wheel drives. 2002. Proc. IEEE 56th Vehicular Technology Conf.. 1671-1675. DOI:10.1109/VETECF.2002.1040500http://doi.org/10.1109/VETECF.2002.1040500.
J Sánchez-Hermosilla, F Rodríguez, R González, 等. A Barrera. A mechatronic description of an autonomous mobile robot for agricultural tasks in greenhouses. Mobile Robots Navigation, 2010. :CroatiaInTech, 583-607. .
N Sidek, N Sarkar. Dynamic modeling and control of nonholonomic mobile robot with lateral slip. 2008. Proc. 3rd Int. Conf. on Systems. 35-40. DOI:10.1109/ICONS.2008.22http://doi.org/10.1109/ICONS.2008.22.
CC Ward, K Iagnemma. A dynamic-model-based wheel slip detector for mobile robots on outdoor terrain. IEEE Trans Robot, 2008. 24(4):821-831. DOI:10.1109/TRO.2008.924945http://doi.org/10.1109/TRO.2008.924945.
JY Wong, AR Reece. Prediction of rigid wheel performance based on the analysis of soil-wheel stresses: Part II. Performance of towed rigid wheels. J Terramech, 1967. 4(2):7-25. DOI:10.1016/0022-4898(67)90047-Xhttp://doi.org/10.1016/0022-4898(67)90047-X.
T Zielinska, A Chmielniak. Controlling the slip in mobile robots. 2010. Proc. 13th Int. Conf. on Climbing and Walking Robots and the Support Technologies for Mobile Machines. 13-20. .
M Zohaib, SM Pasha, N Javaid, 等. An improved algorithm for collision avoidance in environments having U and H shaped obstacles. Stud Inform Contr, 2014. 23(1):97-106. .
M Zohaib, SM Pasha, N Javaid, 等. IBA: intelligent bug algorithm—a novel strategy to navigate mobile robots autonomously. 2014. Proc. 3rd Int. Multi-topic Conf.. 291-299. DOI:10.1007/978-3-319-10987-9_27http://doi.org/10.1007/978-3-319-10987-9_27.
关联资源
相关文章
相关作者
相关机构