FOLLOWUS
Department of Electrical Engineering, Chulalongkorn University, Bangkok 10330, Thailand
†E-mail:c.rongrit@gmail.comsurachai.c@chula.ac.th
‡Corresponding Author
纸质出版日期:2015-10,
收稿日期:2015-02-08,
修回日期:2015-09-21,
录用日期:2015-05-31
Scan QR Code
一种评估间歇式可再生能源对输电网扩展规划影响的方法[J]. 信息与电子工程前沿(英文), 2015,16(10):871-882.
CHATTHAWORN RONGRIT, CHAITUSANEY SURACHAI. An approach for evaluating the impact of an intermittent renewable energy source on transmission expansion planning*. [J]. Frontiers of information technology & electronic engineering, 2015, 16(10): 871-882.
一种评估间歇式可再生能源对输电网扩展规划影响的方法[J]. 信息与电子工程前沿(英文), 2015,16(10):871-882. DOI: 10.1631/FITEE.1500049.
CHATTHAWORN RONGRIT, CHAITUSANEY SURACHAI. An approach for evaluating the impact of an intermittent renewable energy source on transmission expansion planning*. [J]. Frontiers of information technology & electronic engineering, 2015, 16(10): 871-882. DOI: 10.1631/FITEE.1500049.
目的
2
针对间歇式可再生能源对输电网扩展规划(Transmission expansion planning
TEP)的影响,提出一种稳健的最优化评估方法。
创新点
2
TEP的目标函数由传输线的投资成本和常规发电机的运行成本组成。为对所有的运行场景都获取稳健的扩展规划,提出一种选择恰当“代表间断性可再生能源的生产和负载”运行场景的方法。
方法
2
在所提出的TEP中,使用自适应禁忌算法(ATS,一种元启发式算法)。ATS在主问题(最小化投资和运营成本)和子问题(最小化常规电机电能生产成本,缩减可再生能源的生产和负载)间相互迭代。其中子问题由基于内点方法的非线性规划求解。此外,通过在考虑或不考虑可再生能源的条件下对比扩展规划,进一步评估间歇式可再生能源对TEP的影响。
结论
2
使用IEEE Reliability Test System 79(RTS79)测试所述方法,并评估间歇式可再生能源对TEP的影响。结果显示,相较其他方法本文所述最优化方法能够给出更为稳健的结果;而且,间歇式可再生能源对TEP的影响是应当纳入考虑范围的。
We propose a new robust optimization approach to evaluate the impact of an intermittent renewable energy source on transmission expansion planning (TEP). The objective function of TEP is composed of the investment cost of the transmission line and the operating cost of conventional generators. A method to select suitable scenarios representing the intermittent renewable energy generation and loads is proposed to obtain robust expansion planning for all possible scenarios. A meta-heuristic algorithm called adaptive tabu search (ATS) is employed in the proposed TEP. ATS iterates between the main problem
which minimizes the investment and operating costs
and the subproblem
which minimizes the cost of power generation from conventional generators and curtailments of renewable energy generation and loads. The subproblem is solved by nonlinear programming (NLP) based on an interior point method. Moreover
the impact of an intermittent renewable energy source on TEP was evaluated by comparing expansion planning with and without consideration of a renewable energy source. The IEEE Reliability Test System 79 (RTS 79) was used for testing the proposed method and evaluating the impact of an intermittent renewable energy source on TEP. The results show that the proposed robust optimization approach provides a more robust solution than other methods and that the impact of an intermittent renewable energy source on TEP should be considered.
自适应禁忌搜索可再生能源生产鲁棒优化输电扩展规划
Adaptive tabu searchRenewable energy generationRobust optimizationTransmission expansion planning
T Akbari, M Heidarization, MS Siab, 等. Towards integrated planning: simultaneous transmission and substation expansion planning. Electr Power Syst Res, 2012. 86131-139. DOI:10.1016/j.epsr.2011.12.012http://doi.org/10.1016/j.epsr.2011.12.012.
B Alizadeh, S Dehghan, N Amjady, 等. Robust transmission system expansion considering planning uncertainties. IET Gener Transm Distrib, 2013. 7(11):1318-1331. DOI:10.1049/iet-gtd.2012.0137http://doi.org/10.1049/iet-gtd.2012.0137.
S Asadamongkol, B Eua-Arporn. Benders Decomposition Based Method for Multistage Transmission Expansion Planning with Security Constraints. PhD T, 2010. Department of Electrical Engineering, Chulalongkorn University, Bangkok, .
L Bahiense, GC Oliveira, M Pereira, 等. A mixed integer disjunctive model for transmission network expansion. IEEE Trans Power Syst, 2001. 16(3):560-565. DOI:10.1109/59.932295http://doi.org/10.1109/59.932295.
R Bent, A Berscheid, G Loren Toole. Generation and transmission expansion planning for renewable energy integration. 2011. Power Systems Computation Conf. .
D Bertsimas, E Litvinov, XA Sun, 等. Adaptive robust optimization for the security constrained unit commitment problem. IEEE Trans Power Syst, 2013. 28(1):52-63. DOI:10.1109/TPWRS.2012.2205021http://doi.org/10.1109/TPWRS.2012.2205021.
ME Cebeci, S Eren, OB Tor, 等. Transmission and substation expansion planning using mixed integer programming. 2011. North American Power Symp. 1-5. DOI:10.1109/NAPS.2011.6024851http://doi.org/10.1109/NAPS.2011.6024851.
RS Chanda, PK Bhattacharjee. Application of computer software in transmission expansion planning using variable load structure. Electr Power Syst Res, 1994. 31(1):13-20. DOI:10.1016/0378-7796(94)90024-8http://doi.org/10.1016/0378-7796(94)90024-8.
EL da Silva, JMA Ortiz, GC Oliviera, 等. Transmission network expansion planning under a tabu search approach. IEEE Trans Power Syst, 2001. 16(1):62-68. DOI:10.1109/59.910782http://doi.org/10.1109/59.910782.
Department of Alternative Energy Development and Efficiency (DEDE)Alternative Energy Development Plan: AEDP 2012–2021. 2012. Ministry of Energy, Thailand. .
YP Dusonchet, AH El-Abiad. Transmission planning using discrete dynamic optimization. IEEE Trans Power Appar Syst, 1973. PAS-92(4):1358-1371. DOI:10.1109/TPAS.1973.293543http://doi.org/10.1109/TPAS.1973.293543.
AO Ekwue, BJ Cory. Transmission system expansion planning by interactive methods. IEEE Trans Power Appl Syst, 1984. PAS-103(7):1583-1591. DOI:10.1109/TPAS.1984.318637http://doi.org/10.1109/TPAS.1984.318637.
AH Escobar, RA Gallego, R Romero. Multistage and coordinated planning of the expansion of transmission systems. IEEE Trans Power Syst, 2004. 19(2):735-744. DOI:10.1109/TPWRS.2004.825920http://doi.org/10.1109/TPWRS.2004.825920.
I Fuchs, S Völler, T Gjengedal. Improved method for integrating renewable energy sources into the power system of northern Europe: transmission expansion planning for wind power integration. 2011. 10th Int. Conf. on Environment and Electrical Engineering. 1-4. DOI:10.1109/EEEIC.2011.5874642http://doi.org/10.1109/EEEIC.2011.5874642.
J Grainger, SJ William. Power System Analysis, 1994. McGraw Hill, Singapore, .
AH Hajimiragha, CA Cañizares, MW Fowler, 等. A robust optimization approach for planning the transition to plug-in hybrid electric vehicles. IEEE Trans Power Syst, 2011. 26(4):2264-2274. DOI:10.1109/TPWRS.2011.2108322http://doi.org/10.1109/TPWRS.2011.2108322.
RA Jabr. Robust transmission network expansion planning with uncertain renewable generation and loads. IEEE Trans Power Syst, 2013. 28(4):4558-4567. DOI:10.1109/TPWRS.2013.2267058http://doi.org/10.1109/TPWRS.2013.2267058.
A Katdee. Tabu Searching. 2010. Rangsit University, Thailand. .
H Khatib. Economic Evaluation of Projects in the Electricity Supply Industry. 2003. The Institution of Engineering and Technology, London, England. .
G Latorre, RD Cruz, JM Areiza, 等. Classification of publications and models on transmission expansion planning. IEEE Trans Power Syst, 2003. 18(2):938-946. DOI:10.1109/TPWRS.2003.811168http://doi.org/10.1109/TPWRS.2003.811168.
AM Leite da Silva, LA Fonseca Manso, W de Sousa Sales, 等. Chronological power flow for planning transmission systems considering intermittent sources. IEEE Trans Power Syst, 2012. 27(4):2314-2322. DOI:10.1109/TPWRS.2012.2203830http://doi.org/10.1109/TPWRS.2012.2203830.
A Monticelli, AJr Santos, MVF Pereira, 等. Interactive transmission network planning using a least-effort criterion. IEEE Trans Power Appar Syst, 1982. PAS-101(10):3919-3925. DOI:10.1109/TPAS.1982.317043http://doi.org/10.1109/TPAS.1982.317043.
H Mori, Y Sone. A parallel tabu search based approach to transmission network expansion planning. 2001. IEEE Porto Power Tech Conf. DOI:10.1109/PTC.2001.964744http://doi.org/10.1109/PTC.2001.964744.
C Muñoz, E Sauma, J Contreras, 等. Impact of high wind power penetration on transmission network expansion planning. IET Gener Transm Distrib, 2012. 6(12):1281-1291. DOI:10.1049/iet-gtd.2011.0552http://doi.org/10.1049/iet-gtd.2011.0552.
A Rezaee Jordehi. A chaotic-based big bang–big crunch algorithm for solving global optimization problems. Neur Comput Appl, 2014. 25(6):1329-1335. DOI:10.1007/s00521-014-1613-1http://doi.org/10.1007/s00521-014-1613-1.
A Rezaee Jordehi. Optimal setting of TCSCs in power systems using teaching-learning-based optimisation algorithm. Neur Comput Appl, 2014. 26(5):1249-1256. DOI:10.1007/s00521-014-1791-xhttp://doi.org/10.1007/s00521-014-1791-x.
A Rezaee Jordehi. Brainstorm optimisation algorithm (BSOA): an efficient algorithm for finding optimal location and setting of FACTS devices in electric power. Int J Electr Power Energy Syst, 2015. 6948-57. DOI:10.1016/j.ijepes.2014.12.083http://doi.org/10.1016/j.ijepes.2014.12.083.
A Rezaee Jordehi. Chaotic bat swarm optimisation (CBSO). Appl Soft Comput, 2015. 26523-530. DOI:10.1016/j.asoc.2014.10.010http://doi.org/10.1016/j.asoc.2014.10.010.
A Rezaee Jordehi. Enhanced leader PSO (ELPSO): a new algorithm for allocating distributed TCSC’s in power systems. Int J Electr Power Energy Syst, 2015. 64771-784. DOI:10.1016/j.ijepes.2014.07.058http://doi.org/10.1016/j.ijepes.2014.07.058.
A Rezaee Jordehi. Enhanced leader PSO (ELPSO): a new PSO variant for solving global optimisation problems. Appl Soft Comput, 2015. 26401-417. DOI:10.1016/j.asoc.2014.10.026http://doi.org/10.1016/j.asoc.2014.10.026.
MJ Rider, AV Garcia, R Romero. Power system transmission network expansion planning using AC model. IET Gener Transm Distrib, 2007. 1(5):731-742. DOI:10.1049/iet-gtd:20060465http://doi.org/10.1049/iet-gtd:20060465.
R Romero, RA Gallego, A Monticelli. Transmission system expansion planning by simulated annealing. IEEE Trans Power Syst, 1996. 11(1):364-369. DOI:10.1109/59.486119http://doi.org/10.1109/59.486119.
AT Sarić, AM Stanković. A robust algorithm for volt/var control. 2009. IEEE Power Systems Conf. and Exposition. 1-8. DOI:10.1109/PSCE.2009.4840211http://doi.org/10.1109/PSCE.2009.4840211.
MS Sepasian, H Seifi, AA Foroud, 等. A new approach for substation expansion planning. IEEE Trans Power Syst, 2006. 21(2):997-1004. DOI:10.1109/TPWRS.2006.873406http://doi.org/10.1109/TPWRS.2006.873406.
HG Stoll. Least-Cost Electric Utility Planning, 1989. John Wiley & Sons, New York, United States, .
WG Sullivan, EM Wicks, JT Luxhoj. Engineering Economy, 2003. Pearson Education, New Jersey, USA, .
University of YorkOrthogonal Arrays (Taguchi Designs). 2004. Available from http://www.york.ac.uk/depts/maths/tables/orthogonal.htm [Accessed on June 20, 2014]. .
HK Youssef, R Hackam. New transmission planning model. IEEE Trans Power Syst, 1989. 4(1):9-18. DOI:10.1109/59.32451http://doi.org/10.1109/59.32451.
H Yu, WD Rosehart. An optimal power flow algorithm to achieve robust operation considering load and renewable generation uncertainties. IEEE Trans Power Syst, 2012. 27(4):1808-1817. DOI:10.1109/TPWRS.2012.2194517http://doi.org/10.1109/TPWRS.2012.2194517.
H Yu, CY Chung, KP Wong, 等. A chance constrained transmission network expansion planning method with consideration of load and wind farm uncertainties. IEEE Trans Power Syst, 2009. 24(3):1568-1576. DOI:10.1109/TPWRS.2009.2021202http://doi.org/10.1109/TPWRS.2009.2021202.
H Yu, CY Chung, KP Wong. Robust transmission network expansion planning method with Taguchi’s orthogonal array testing. IEEE Trans Power Syst, 2011. 26(3):1573-1580. DOI:10.1109/TPWRS.2010.2082576http://doi.org/10.1109/TPWRS.2010.2082576.
A Zahedi. Performance evaluation of wind turbine using Monte Carlo method and turbine power curve. 2012. Int. Power and Energy Conf. 161-165. DOI:10.1109/ASSCC.2012.6523257http://doi.org/10.1109/ASSCC.2012.6523257.
关联资源
相关文章
相关作者
相关机构