FOLLOWUS
1College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
2School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
3College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
4College of Software Engineering, Pingdingshan University, Pingdingshan 467000, China
E-mail:gjl991@163.com
E-mail:wencl@hdu.edu.cn
E-mail:zjbao@zju.edu.cn
E-mail:liumeiqin@zju.edu.cn
纸质出版日期:2016-11,
收稿日期:2016-04-25,
录用日期:2016-8-9
Scan QR Code
基于时域滤波和关联策略的红外慢速目标检测[J]. 信息与电子工程前沿(英文), 2016,17(11):1176-1185.
JING-LI GAO, CHENG-LIN WEN, ZHE-JING BAO, et al. Detecting slowly moving infrared targets using temporal filtering and association strategy. [J]. Frontiers of information technology & electronic engineering, 2016, 17(11): 1176-1185.
基于时域滤波和关联策略的红外慢速目标检测[J]. 信息与电子工程前沿(英文), 2016,17(11):1176-1185. DOI: 10.1631/FITEE.1601203.
JING-LI GAO, CHENG-LIN WEN, ZHE-JING BAO, et al. Detecting slowly moving infrared targets using temporal filtering and association strategy. [J]. Frontiers of information technology & electronic engineering, 2016, 17(11): 1176-1185. DOI: 10.1631/FITEE.1601203.
红外慢速目标的一些独特特性,例如像素少,不成形的边缘信息,低信杂比和低速等,使得它们的检测异常困难,而当被淹没在复杂背景中时尤甚。为了解决这一问题,根据时域目标检测和关联策略,本文提出了一种有效的红外目标检测算法。首先,建立一种时域目标检测模型对疑似目标进行分割,该模型主要包含三个阶段,时域滤波,时域目标融合和交叉积滤波;然后提出一种图模型,来关联不同时刻获取的疑似目标。这种关联依赖于目标的运动和表观特征,可进行多次关联操作获取目标轨迹,并据此区分真实目标和由噪声或杂波引起的虚假目标。实验结果表明本文提出的方法能够准确、鲁棒地检测复杂背景下的红外慢速目标,且与几种基准方法相比具有优越的检测性能。
The special characteristics of slowly moving infrared targets
such as containing only a few pixels
shapeless edge
low signal-to-clutter ratio
and low speed
make their detection rather difficult
especially when immersed in complex backgrounds. To cope with this problem
we propose an effective infrared target detection algorithm based on temporal target detection and association strategy. First
a temporal target detection model is developed to segment the interested targets. This model contains mainly three stages
i.e.
temporal filtering
temporal target fusion
and cross-product filtering. Then a graph matching model is presented to associate the targets obtained at different times. The association relies on the motion characteristics and appearance of targets
and the association operation is performed many times to form continuous trajectories which can be used to help disambiguate targets from false alarms caused by random noise or clutter. Experimental results show that the proposed method can detect slowly moving infrared targets in complex backgrounds accurately and robustly
and has superior detection performance in comparison with several recent methods.
时域目标检测慢速移动目标图匹配目标关联
Temporal target detectionSlowly moving targetsGraph matchingTarget association
T Bae..patial and temporal bilateral filter for infrared small target enhancement..Infrared Phys. Technol.,,2014..6342--53..DOI:10.1016/j.infrared.2013.12.007http://doi.org/10.1016/j.infrared.2013.12.007..
CL Chen,,,H Li,,,Y Wei,,,等..A local contrast method for small infrared target detection..IEEE Trans. Geosci. Remote Sens.,,2014..52((1):):574--581..DOI:10.1109/TGRS.2013.2242477http://doi.org/10.1109/TGRS.2013.2242477..
Z Chen,,,X Wang,,,Z Sun,,,等..Motion saliency detection using a temporal Fourier transform..Opt. Laser Technol.,,2016..801--15..DOI:10.1016/j.optlastec.2015.12.013http://doi.org/10.1016/j.optlastec.2015.12.013..
D Comaniciu,,,V Ramesh,,,P Meer..Real-time tracking of non-rigid objects using mean shift..2000..Proc. IEEE Conf. on Computer Vision and Pattern Recognition..142--149..DOI:10.1109/CVPR.2000.854761http://doi.org/10.1109/CVPR.2000.854761..
L Deng,,,H Zhu,,,C Tao,,,等..Infrared moving point target detection based on spatial-temporal local contrast filter..Infrared Phys. Technol.,,2016..76168--173..DOI:10.1016/j.infrared.2016.02.010http://doi.org/10.1016/j.infrared.2016.02.010..
SD Deshpande,,,HE Meng,,,R Venkateswarlu,,,等..Max-mean and max-median filters for detection of small targets..1999..Proc. SPIE..74--83..DOI:10.1117/12.364049http://doi.org/10.1117/12.364049..
X Dong,,,X Huang,,,Y Zheng,,,等..Infrared dim and small target detecting and tracking method inspired by human visual system..Infrared Phys. Technol.,,2014..62100--109..DOI:10.1016/j.infrared.2013.11.007http://doi.org/10.1016/j.infrared.2013.11.007..
C Gao,,,D Meng,,,Y Yang,,,等..Infrared patchimage model for small target detection in a single image..IEEE Trans. Image Process.,,2013..22((12):):4996--5009..DOI:10.1109/TIP.2013.2281420http://doi.org/10.1109/TIP.2013.2281420..
J Gao,,,C Wen,,,M Liu..Low-speed small target detection based on SVD and superposition..J. Shanghai Jiao Tong Univ.,,2015..49((6):):876--883..DOI:10.16183/j.cnki.jsjtu.2015.06.023http://doi.org/10.16183/j.cnki.jsjtu.2015.06.023..
S Kim,,,SG Sun,,,KT Kim..Highly efficient supersonic small infrared target detection using temporal contrast filter..Electron. Lett.,,2014..50((2):):81--83..DOI:10.1049/el.2013.2109http://doi.org/10.1049/el.2013.2109..
Y Li,,,P Li,,,Q Shen..Real-time infrared target tracking based on ℓ1 minimization and compressive features..Appl. Opt.,,2014..53((28):):6518--6526..DOI:10.1364/AO.53.006518http://doi.org/10.1364/AO.53.006518..
D Liu,,,Z Li,,,X Wang,,,等..Moving target detection by nonlinear adaptive filtering on temporal profiles in infrared image sequences..Infrared Phys. Technol.,,2015..7341--48..DOI:10.1016/j.infrared.2015.09.003http://doi.org/10.1016/j.infrared.2015.09.003..
R Liu,,,X Li,,,L Han,,,等..Track infrared point targets based on projection coefficient templates and non-linear correlation combined with Kalman prediction..Infrared Phys. Technol.,,2013..5768--75..DOI:10.1016/j.infrared.2012.12.011http://doi.org/10.1016/j.infrared.2012.12.011..
IEEE OTCBVS WS Series BenchTerravic Research Infrared Database,,..Available fromhttp://vcipl-okstate.org/pbvs/bench/Data/05/download.htmlhttp://vcipl-okstate.org/pbvs/bench/Data/05/download.html..
J Silverman,,,JM Mooney,,,CE Caefer..Temporal filters for tracking weak slow point targets in evolving cloud clutter..Infrared Phys. Technol.,,1996..37((6):):695--710..DOI:10.1016/S1350-4495(96)00003-5http://doi.org/10.1016/S1350-4495(96)00003-5..
M Taj,,,E Maggio,,,A Cavallaro..Multi-feature graph-based object tracking..2006..Proc. 1st Int. Evaluation Workshop on Classification of Events, Activities and Relationships..190--199..DOI:10.1007/978-3-540-69568-4_15http://doi.org/10.1007/978-3-540-69568-4_15..
Z Wang,,,J Tian,,,J Liu,,,等..Small infrared target fusion detection based on support vector machines in the wavelet domain..Opt. Eng.,,2006..45((7):):076401DOI:10.1117/1.2218864http://doi.org/10.1117/1.2218864..
Z Wang,,,Y Ma,,,L Wang..Assessment of threat degree for LSS target in air defense operation..Shipboard Electron. Countermeas.,,2013..36((6):):103--105....
X Yan,,,X Wu,,,IA Kakadiaris,,,等..To track or to detect? An ensemble framework for optimal selection..2012..Proc. 12th European Conf. on Computer Vision..594--607..DOI:10.1007/978-3-642-33715-4_43http://doi.org/10.1007/978-3-642-33715-4_43..
Y Yang,,,J Wu,,,W Zheng..Trajectory tracking for an autonomous airship using fuzzy adaptive sliding mode control..J. Zhejiang Univ.-Sci. C (Comput. & Electron.),,2012..13((7):):534--543..DOI:10.1631/jzus.C1100371http://doi.org/10.1631/jzus.C1100371..
F Zhang,,,C Li,,,L Shi..Detecting and tracking dim moving point target in IR image sequence..Infrared Phys. Technol.,,2005..46((4):):323--328..DOI:10.1016/j.infrared.2004.06.001http://doi.org/10.1016/j.infrared.2004.06.001..
J Zhang,,,H Guo..Net cast interception system research aimed at low small slow target..Comput. Eng. Des.,,2012..33((7):):2874--2878....
J Zhang,,,Q Li,,,N Cheng,,,等..Nonlinear pathfollowing method for fixed-wing unmanned aerial vehicles..J. Zhejiang Univ.-Sci. C (Comput. & Electron.),,2013..14((2):):125--132..DOI:10.1631/jzus.C1200195http://doi.org/10.1631/jzus.C1200195..
Y Zhang,,,Y Xin,,,C Zhang..An algorithm based on temporal and spatial filters for infrared weak slow moving point target detection..Acta Photon. Sin.,,2010..39((11):):2049--2054..DOI:10.3788/gzxb20103911.2049http://doi.org/10.3788/gzxb20103911.2049..
关联资源
相关文章
相关作者
相关机构