FOLLOWUS
Department of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
Jian-qiao CHEN, E-mail: jqchen1988@163.com
[ "Zhi ZHANG, E-mail: zhangzhi@bupt.edu.cn" ]
[ "Tian TANG, E-mail: tangtian@bupt.edu.cn" ]
[ "Yu-zhen HUANG, E-mail: yzh_huang@sina.com" ]
纸质出版日期:2017-12,
收稿日期:2017-01-13,
修回日期:2017-12-20,
Scan QR Code
陈建侨, 张治, 唐恬, 等. 基于非稳定性的5G大规模MIMO信道建模[J]. 信息与电子工程前沿(英文), 2017,18(12):2101-2110.
CHEN JIAN-QIAO, ZHANG ZHI, TANG TIAN, et al. A non-stationary channel model for 5G massive MIMO systems. [J]. Frontiers of information technology & electronic engineering, 2017, 18(12): 2101-2110.
陈建侨, 张治, 唐恬, 等. 基于非稳定性的5G大规模MIMO信道建模[J]. 信息与电子工程前沿(英文), 2017,18(12):2101-2110. DOI: 10.1631/FITEE.1700028.
CHEN JIAN-QIAO, ZHANG ZHI, TANG TIAN, et al. A non-stationary channel model for 5G massive MIMO systems. [J]. Frontiers of information technology & electronic engineering, 2017, 18(12): 2101-2110. DOI: 10.1631/FITEE.1700028.
本文提出一种新型的大规模多输入多输出(massive multiple-input multiple-output
MIMO)通信系统信道模型,同时考虑了球面波假设以及随着天线阵列和时间变化的散射体非稳定特性。由于大规模天线阵列的引入,会导致接收端的不同天线阵子的到达角和多普勒频移不同,因此,采用球面波假设来刻画近场效应。此外,为在接收端刻画不同散射体对天线阵子的可见性,本文提出一种散射体可见区域法同时,对应于理论模型,本文提出了一种有限散射体仿真信道模型。最后,以统计特性作为指标,研究了球面波假设和散射体非稳定性对massive MMO信道模型的影响。研究结果表明,本文提出的信道模型可以很好地刻画massive MIMO信道特性。
We propose a novel channel model for massive multiple-input multiple-out (MIMO) communication systems that incorporate the spherical wave-front assumption and non-stationary properties of clusters on both the array and time axes. Because of the large dimension of the antenna array in massive MIMO systems
the spherical wave-front is assumed to characterize near-field effects resulting in angle of arrival (AoA) shifts and Doppler frequency variations on the antenna array. Additionally
a novel visibility region method is proposed to capture the non-stationary properties of clusters at the receiver side. Combined with the birth-death process
a novel cluster evolution algorithm is proposed. The impacts of cluster evolution and the spherical wave-front assumption on the statistical properties of the channel model are investigated. Meanwhile
corresponding to the theoretical model
a simulation model with a finite number of rays that capture channel characteristics as accurately as possible is proposed. Finally
numerical analysis shows that our proposed non-stationary channel model is effective in capturing the characteristics of a massive MIMO channel.
大规模多输入多输出球面波假设非稳定性生灭过程散射体可见区域法
Massive MIMOSpherical wave-front assumptionNon-stationary propertyBirth-death processVisibility region method
F. Babich, G. Lombardi. A Markov model for the mobile propagation channel. IEEE Trans. Veh. Technol., 2000. 49(1):63-73. DOI:10.1109/25.820699http://doi.org/10.1109/25.820699.
F. Bohagen, P. Orten, G.E. Oien. Modeling of lineof-sight 2×2 MIMO channels: spherical versus plane waves. IEEE Int. Symp. on Personal, Indoor and Mobile Radio Communications, 2006. p.1-5. DOI:10.1109/PIMRC.2006.254307http://doi.org/10.1109/PIMRC.2006.254307.
C.C. Chong, C.M. Tan, D.I. Laurenson, 等. A novel wideband dynamic directional indoor channel model based on a Markov process. IEEE Trans. Wirel. Commun., 2005. 4(4):1539-1552. DOI:10.1109/TWC.2005.850341http://doi.org/10.1109/TWC.2005.850341.
SI ET. Spatial Channel Model for Multiple Input Multiple Output (MIMO). Technical Report, 3GPP TR 25.996 Release 12, 2014. 3http://www.3gpp.orghttp://www.3gpp.org, .
X. Gao, F. Tufvesson, O. Edfors, 等. Measured propagation characteristics for very-large MIMO at 2.6 GHz. 46th Asilomar Conf. on Signals. Systems and Computers, 2012. p.295-299. DOI:10.1109/ACSSC.2012.6489010http://doi.org/10.1109/ACSSC.2012.6489010.
X. Gao, F. Tufvesson, O. Edfors. Massive MIMO channels-measurements and models. Asilomar Conf. on Signals, Systems and Computers, 2013. p.280-284. DOI:10.1109/ACSSC.2013.6810277http://doi.org/10.1109/ACSSC.2013.6810277.
ITU-R. Guidelines for Evaluation of Radio Interface Technologies for IMT-Advanced. Technical Report, No. M.2135, 2008.
P. Kyö sti, J. Meinilä, L. Hentilä, 等. Winner Ⅱ Channel Models Part Ⅱ Radio Channel Measurement and Analysis Results. Technical Report, No. T-4-027756, 2007.
E.G. Larsson, O. Edfors, F. Tufvesson, 等. Massive MIMO for next generation wireless systems. IEEE Commun. Mag., 2014. 52(2):186-195. DOI:10.1109/MCOM.2014.6736761http://doi.org/10.1109/MCOM.2014.6736761.
X.R. Li, S.D. Zhou, E. Bjornson, 等. Capacity analysis for spatially non-wide sense stationary uplink massive MIMO systems. IEEE Trans. Wirel. Commun., 2015. 14(12):7044-7056. DOI:10.1109/TWC.2015.2464219http://doi.org/10.1109/TWC.2015.2464219.
L.F. Liu, C. Oestges, J. Poutanen, 等. The cost 2 100 MIMO channel model. IEEE Wirel. Commun., 2012. 19(6):92-99. DOI:10.1109/MWC.2012.6393523http://doi.org/10.1109/MWC.2012.6393523.
L. Lu, G.Y. Li, A.L. Swindlehurst, 等. An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Top. Signal Process., 2014. 8(5):742-758. DOI:10.1109/JSTSP.2014.2317671http://doi.org/10.1109/JSTSP.2014.2317671.
M. Paetzold. Mobile Radio Channels, 2nd Ed:West Sussex, UKJohn Wiley and Sons, 2011.
S. Payami, F. Tufvesson. Channel measurements and analysis for very large array systems at 2.6 GHz. 6th European Conf. on Antennas and Propagation, 2012. p.433-437. DOI:10.1109/EuCAP.2012.6206345http://doi.org/10.1109/EuCAP.2012.6206345.
F. Rusek, D. Persson, B.K. Lau, 等. Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process Mag., 2013. 30(1):40-60. DOI:10.1109/MSP.2011.2178495http://doi.org/10.1109/MSP.2011.2178495.
L. Schumacher, K.I. Pedersen, P.E. Mogensen. From antenna spacings to theoretical capacities-guidelines for simulating MIMO systems. 13th IEEE Int. Symp. on Personal, Indoor and Mobile Radio Communications, 2002. p.587-592. DOI:10.1109/PIMRC.2002.1047289http://doi.org/10.1109/PIMRC.2002.1047289.
C.X. Wang, F. Haider, X.Q. Gao, 等. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag., 2014. 52(2):122-130. DOI:10.1109/MCOM.2014.6736752http://doi.org/10.1109/MCOM.2014.6736752.
H.L. Wu, S. Jin, X.Q. Gao. Non-stationary multiring channel model for massive MIMO systems. Int. Conf. on Wireless Communications & Signal Processing, 2015. p.1-6. DOI:10.1109/WCSP.2015.7341264http://doi.org/10.1109/WCSP.2015.7341264.
S.B. Wu, C.X. Wang, E.H.M. Aggoune, 等. A non-stationary 3D wideband twin-cluster model for 5G massive MIMO channels. IEEE J. Sel. Areas Commun., 2014. 32(6):1207-1218. DOI:10.1109/JSAC.2014.2328131http://doi.org/10.1109/JSAC.2014.2328131.
S.B. Wu, C.X. Wang, H. Haas, 等. A nonstationary wideband channel model for massive MIMO communication systems. IEEE Trans. Wirel. Commun., 2015. 14(3):1434-1446. DOI:10.1109/TWC.2014.2366153http://doi.org/10.1109/TWC.2014.2366153.
Y. Xie, B. Li, X.Y. Zuo, 等. A 3D geometrybased stochastic model for 5G massive MIMO channels. Int. Conf. on Heterogeneous Networking for Quality, Reliability, Security and Robustness, 2015. p.216-222. DOI:10.4108/eai.19-8-2015.2259755http://doi.org/10.4108/eai.19-8-2015.2259755.
A.D. Yaghjian. An overview of near-field antenna measurements. IEEE Trans. Antennas Propag., 1986. 34(1):30-45. DOI:10.1109/TAP.1986.1143727http://doi.org/10.1109/TAP.1986.1143727.
K. Zheng, S.L. Ou, X.F. Yin. Massive MIMO channel models: a survey. Int. J. Antennas Propag., 2014. 2014(11):1-10. DOI:10.1155/2014/848071http://doi.org/10.1155/2014/848071.
T. Zwick, C. Fischer, D. Didascalou, 等. A stochastic spatial channel model based on wavepropagation modeling. IEEE J. Sel. Areas Commun., 2000. 18(1):6-15. DOI:10.1109/49.821698http://doi.org/10.1109/49.821698.
T. Zwick, C. Fischer, W. Wiesbeck. A stochastic multipath channel model including path directions for indoor environments. IEEE J. Sel. Areas Commun., 2002. 20(6):1178-1192. DOI:10.1109/JSAC.2002.801218http://doi.org/10.1109/JSAC.2002.801218.
关联资源
相关文章
相关作者
相关机构