FOLLOWUS
State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an 710071, China
Technische Universitt Darmstadt, Darmstadt 64289, Germany
Mo-meng LIU, E-mail: liumomeng@gmail.com
纸质出版日期:2017-09,
收稿日期:2017-01-12,
修回日期:2017-09-24,
Scan QR Code
刘沫萌, Juliane Krämer, 胡予濮, 等. 一个格上不经意传输协议的量子安全性分析[J]. 信息与电子工程前沿(英文), 2017,18(9):1348-1369.
MO-MENG LIU, JULIANE KRMER, YU-PU HU, et al. Quantum security analysis of a lattice-based oblivious transfer protocol. [J]. Frontiers of information technology & electronic engineering, 2017, 18(9): 1348-1369.
刘沫萌, Juliane Krämer, 胡予濮, 等. 一个格上不经意传输协议的量子安全性分析[J]. 信息与电子工程前沿(英文), 2017,18(9):1348-1369. DOI: 10.1631/FITEE.1700039.
MO-MENG LIU, JULIANE KRMER, YU-PU HU, et al. Quantum security analysis of a lattice-based oblivious transfer protocol. [J]. Frontiers of information technology & electronic engineering, 2017, 18(9): 1348-1369. DOI: 10.1631/FITEE.1700039.
不经意传输协议(oblivious transfer
OT)因其简易的密码功能广泛应用于安全多方计算。以往OT协议都是基于传统数论问题(例如,离散对数,大数分解问题)所构造的,随着量子计算技术的发展,基于传统困难问题的OT协议安全性受到极大的威胁。因此,人们转而考虑使用后量子密码技术替代以往OT协议所依赖的传统困难问题。目前,已有一些基于后量子密码体制的OT协议被提出。然而,大多数后量子密码构造只在假设传统敌手存在的环境下证明其方案安全性。在本文中,我们在量子敌手存在的环境下,证明一个基于格公钥密码的OT协议([PVW08])的安全性。首先我们使用量子平移定理([Unr10])证明该协议的安全性可以完全平移到量子环境中,此外,我们还使用其他两个专用于分析后量子密码原语的分析模型([HSS11],[Son14])从不同的角度对该协议进行安全性分析,从而保证我们给出的量子安全证明的正确性。我们的成果可以看作对后量子密码协议分析模型的一个实际应用实例。
Because of the concise functionality of oblivious transfer (OT) protocols
they have been widely used as building blocks in secure multiparty computation and high-level protocols. The security of OT protocols built upon classical number theoretic problems
such as the discrete logarithm and factoring
however
is threatened as a result of the huge progress in quantum computing. Therefore
post-quantum cryptography is needed for protocols based on classical problems
and several proposals for post-quantum OT protocols exist. However
most post-quantum cryptosystems present their security proof only in the context of classical adversaries
not in the quantum setting. In this paper
we close this gap and prove the security of the lattice-based OT protocol proposed by Peikert et al. (CRYPTO
2008)
which is universally composably secure under the assumption of learning with errors hardness
in the quantum setting. We apply three general quantum security analysis frameworks. First
we apply the quantum lifting theorem proposed by Unruh (EUROCRYPT
2010) to prove that the security of the lattice-based OT protocol can be lifted into the quantum world. Then
we apply two more security analysis frameworks specified for post-quantum cryptographic primitives
i.e.
simple hybrid arguments (CRYPTO
2011) and game-preserving reduction (PQCrypto
2014).
不经意传输后量子格公钥带差错学习通用可复合
Oblivious transferPost-quantumLattice-basedLearning with errorsUniversally composable
D.J. Bernstein, , , J. Buchamann, , , E. Dahmen. . PostQuantum Cryptography. . Springer, Berlin., , 2009. . DOI:10.1007/978-3-540-88702-7http://doi.org/10.1007/978-3-540-88702-7..
R. Canetti. . Universally composable security: a new paradigm for cryptographic protocols. . Proc. 42nd IEEE Symp. on Foundations of Computer Science, , 2001. . p.136--145. . DOI:10.1109/SFCS.2001.959888http://doi.org/10.1109/SFCS.2001.959888..
I. Damg rd, , , J. Funder, , , J.B. Nielsen, , , 等. . Superposition attacks on cryptographic protocols. . LNCS, , 2014. . 8317142--161. . DOI:10.1007/978-3-319-04268-8_9http://doi.org/10.1007/978-3-319-04268-8_9..
S. Even, , , O. Goldreich, , , A. Lempel. . A randomized protocol for signing contracts. . Commun. ACM, , 1985. . 28((6):):637--647. . DOI:10.1145/3812.3818http://doi.org/10.1145/3812.3818..
S. Fehr, , , J. Katz, , , F. Song, , , 等. . Feasibility and completeness of cryptographic tasks in the quantum world. . LNCS, , 2013. . 7785281--296. . DOI:10.1007/978-3-642-36594-2_16http://doi.org/10.1007/978-3-642-36594-2_16..
C. Gentry, , , C. Peikert, , , V. Vaikuntanathan. . Trapdoors for hard lattices and new cryptographic constructions. . Proc. 40th Annual ACM Symp. on Theory of Computing, , 2008. . p.197--206. . DOI:10.1145/1374376.1374407http://doi.org/10.1145/1374376.1374407..
N. Gilboa. . Two party RSA key generation. . LNCS, , 1999. . 1666116--129. . DOI:10.1007/3-540-48405-1_8http://doi.org/10.1007/3-540-48405-1_8..
S. Hallgren, , , A. Smith, , , F. Song. . Classical cryptographic protocols in a quantum world. . LNCS, , 2011. . 6841411--428. . DOI:10.1007/978-3-642-22792-9_23http://doi.org/10.1007/978-3-642-22792-9_23..
S. Hallgren, , , A. Smith, , , F. Song. . Classical cryptographic protocols in a quantum world. . Cryptology ePrint Archive, , 2015. . 2015/687http://eprint.iacr.org/2015/687http://eprint.iacr.org/2015/687, , ..
Y. Ishai, , , J. Kilian, , , K. Nissim, , , 等. . Extending oblivious transfers efficiently. . LNCS, , 2003. . 2729145--161. . DOI:10.1007/978-3-540-45146-4_9http://doi.org/10.1007/978-3-540-45146-4_9..
R.W.F. Lai, , , H.K.F. Cheung, , , S.S.M. Chow. . Trapdoors for ideal lattices with applications. . LNCS, , 2014. . 8957239--256. . DOI:10.1007/978-3-319-16745-9_14http://doi.org/10.1007/978-3-319-16745-9_14..
V. Lyubashevsky, , , C. Peikert, , , O. Regev. . On ideal lattices and learning with errors over rings. . J. ACM, , 2013. . 60((6):):43DOI:10.1145/2535925http://doi.org/10.1145/2535925..
D. Micciancio, , , O. Regev. . Lattice-based cryptography. In: Bernstein D.J., Buchmann J., Dahmen, E. (Eds.), Post-Quantum Cryptography. . Springer, Berlin, , 2009. . p.147--191. . DOI:10.1007/978-3-540-88702-7_5http://doi.org/10.1007/978-3-540-88702-7_5..
M.A. Nielsen, , , I.L. Chuang. . Quantum Computation and Quantum Information, , ::CambridgeCambridge University Press, , 2010. ..
C. Peikert. . Some recent progress in lattice-based cryptography. . LNCS, , 2010. . 544472DOI:10.1007/978-3-642-00457-5_5http://doi.org/10.1007/978-3-642-00457-5_5..
C. Peikert, , , V. Vaikuntanathan, , , B. Waters. . A framework for efficient and composable oblivious transfer. . LNCS, , 2008. . 5157554--571. . DOI:10.1007/978-3-540-85174-5_31http://doi.org/10.1007/978-3-540-85174-5_31..
M.O. Rabin. . How to Exchange Secrets with Oblivious Transfer. . Technical Report No. TR-81, Aiken Computation Lab, Harvard University, Cambridge, MA., , 1981. . http://eprint.iacr.org/2005/187http://eprint.iacr.org/2005/187, , ..
O. Regev. . On lattices, learning with errors, random linear codes, and cryptography. . Proc. 37th Annual ACM Symp. on Theory of Computing, , 2005. . p.84--93. . DOI:10.1145/1060590.1060603http://doi.org/10.1145/1060590.1060603..
N. Sendrier. . Code-based cryptography. In: van Tilborg H.C.A., Jajodia, S. (Eds.), Encyclopedia of Cryptography and Security. . Springer, New York, , 2011. . p.215--216. . DOI:10.1007/978-1-4419-5906-5_378http://doi.org/10.1007/978-1-4419-5906-5_378..
P.W. Shor. . Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. . SIAM J. Comput., , 1997. . 26((5):):1484--1509. . DOI:10.1137/S0097539795293172http://doi.org/10.1137/S0097539795293172..
F. Song. . A note on quantum security for post-quantum cryptography. . LNCS, , 2014. . 8772246--265. . DOI:10.1007/978-3-319-11659-4_15http://doi.org/10.1007/978-3-319-11659-4_15..
D. Unruh. . Universally composable quantum multiparty computation. . LNCS, , 2010. . 6110486--505. . DOI:10.1007/978-3-642-13190-5_25http://doi.org/10.1007/978-3-642-13190-5_25..
D. Unruh. . Quantum proofs of knowledge. . LNCS, , 2012. . 7237135--152. . DOI:10.1007/978-3-642-29011-4_10http://doi.org/10.1007/978-3-642-29011-4_10..
J. Watrous. . Zero-knowledge against quantum attacks. . SIAM J. Comput., , 2009. . 39((1):):25--58. . DOI:10.1137/060670997http://doi.org/10.1137/060670997..
M. Zhandry. . How to construct quantum random functions. . IEEE 53rd Annual Symp. on Foundations of Computer Science, , 2012. . p.679--687. . DOI:10.1109/FOCS.2012.37http://doi.org/10.1109/FOCS.2012.37..
关联资源
相关文章
相关作者
相关机构