FOLLOWUS
Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
Department of Mechanical Engineering and Intelligent Systems, the University of Electro-Communications, Tokyo 182-8585, Japan
Xin-yu WU, E-mail: xy.wu@siat.ac.cn
纸质出版日期:2019-03,
收稿日期:2018-09-14,
修回日期:2019-03-14,
Scan QR Code
何勇, 李南, 王超, 等. 一种新型自主下肢外骨骼助行机器人的研制[J]. 信息与电子工程前沿(英文), 2019,20(3):318-329.
YONG HE, NAN LI, CHAO WANG, et al. Development of a novel autonomous lower extremity exoskeleton robot for walking assistance. [J]. Frontiers of information technology & electronic engineering, 2019, 20(3): 318-329.
何勇, 李南, 王超, 等. 一种新型自主下肢外骨骼助行机器人的研制[J]. 信息与电子工程前沿(英文), 2019,20(3):318-329. DOI: 10.1631/FITEE.1800561.
YONG HE, NAN LI, CHAO WANG, et al. Development of a novel autonomous lower extremity exoskeleton robot for walking assistance. [J]. Frontiers of information technology & electronic engineering, 2019, 20(3): 318-329. DOI: 10.1631/FITEE.1800561.
目前,外骨骼被广泛应用于下肢运动障碍患者的步行辅助。现有外骨骼机器人大部分采用欠驱动模式,导致一系列使用问题,如行走过程中步行干扰和不自然步态。提出一种新型智能自主下肢外骨骼(Auto-LEE),旨在改善穿戴式助行器用户体验,扩大应用范围。与传统外骨骼不同,Auto-LEE有10个自由度,所有关节都由直流电机独立驱动,使机器人能在无外部支撑下保持平衡行走。此外,在设计中采用模块化结构理念,在控制系统中考虑多模态人机交互。为验证机器人自主平衡双足行走能力,对比3种常用步态规划算法,初步实现行走实验。
Today
exoskeletons are widely applied to provide walking assistance for patients with lower limb motor incapacity.Most existing exoskeletons are under-actuated
resulting in a series of problems
e.g.
interference and unnatural gait during walking.In this study
we propose a novel intelligent autonomous lower extremity exoskeleton (Auto-LEE)
aiming at improving the user experience of wearable walking aids and extending their application range. Unlike traditional exoskeletons
Auto-LEE has 10 degrees of freedom
and all the joints are actuated independently by direct current motors
which allows the robot to maintain balance in aiding walking without extra support. The new exoskeleton is designed and developed with a modular structure concept and multi-modal human-robot interfaces are considered in the control system.To validate the ability of self-balancing bipedal walking
three general algorithms for generating walking patterns are researched
and a preliminary experiment is implemented.
下肢外骨骼自平衡双足行走模块化设计
Lower-limbExoskeletonSelf-balancingBipedal walkingModular design
DL Brown-Triolo, , , MJ Roach, , , K Nelson, , , 等. . Consumer perspectives on mobility: implications for neuroprosthesis design. . J Rehabil Res Dev, , 2002. . 39((6):):659--669. . ..
M Cenciarini, , , AM Dollar. . Biomechanical considerations in the design of lower limb exoskeletons. . IEEE Int Conf on Rehabilitation Robotics, , 2011. . p.1--6. . DOI:10.1109/ICORR.2011.5975366http://doi.org/10.1109/ICORR.2011.5975366..
Y Fang, , , Y Yu, , , F Chen, , , 等. . Dynamic analysis and control strategy of the wearable power assist leg. . IEEE Int Conf on Automation and Logistics, , 2008. . p.1060--1065. . DOI:10.1109/ICAL.2008.4636308http://doi.org/10.1109/ICAL.2008.4636308..
S Gao. . Practical Anatomical Atlas: Lower Limbs Volume, , ::ShanghaiShanghai Science and Technology Press, , 2004. ..
AD Gardner, , , J Potgieter, , , FK Noble. . A review of commercially available exoskeletons' capabilities. . 24th Int Conf on Mechatronics and Machine Vision in Practice, , 2017. . p.1--5. . DOI:10.1109/M2VIP.2017.8211470http://doi.org/10.1109/M2VIP.2017.8211470..
S Kajita, , , F Kanehiro, , , K Kaneko, , , 等. . The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation. . IEEE/RSJ Int Conf on Intelligent Robots and Systems, , 2001. . p.239--246. . DOI:10.1109/IROS.2001.973365http://doi.org/10.1109/IROS.2001.973365..
S Kajita, , , F Kanehiro, , , K Kaneko, , , 等. . Biped walking pattern generation by using preview control of zeromoment point. . IEEE Int Conf on Robotics and Automation, , 2003. . p.1620--1626. . DOI:10.1109/ROBOT.2003.1241826http://doi.org/10.1109/ROBOT.2003.1241826..
T Katayama, , , T Ohki, , , T Inoue, , , 等. . Design of an optimal controller for a discrete-time system subject to previewable demand. . Int J Contr, , 1985. . 41((3):):677--699. . DOI:10.1080/0020718508961156http://doi.org/10.1080/0020718508961156..
K Kong, , , D Jeon. . Design and control of an exoskeleton for the elderly and patients. . IEEE/ASME Trans Mech, , 2006. . 11((4):):428--432. . DOI:10.1109/TMECH.2006.878550http://doi.org/10.1109/TMECH.2006.878550..
K Kong, , , H Moon, , , B Hwang, , , 等. . Impedance compensation of SUBAR for back-drivable force-mode actuation. . IEEE Trans Rob, , 2009. . 25((3):):512--521. . DOI:10.1109/TRO.2009.2019786http://doi.org/10.1109/TRO.2009.2019786..
C Kopp. . Exoskeletons for warriors of the future. . Defence Today, , 2011. . 9((2):):38--40. . ..
JW McDonald, , , C Sadowsky. . Spinal-cord injury. . Lancet, , 2002. . 359((9304):):417--425. . DOI:10.1016/S0140-6736(02)07603-1http://doi.org/10.1016/S0140-6736(02)07603-1..
L Mertz. . The next generation of exoskeletons: lighter, cheaper devices are in the works. . IEEE Pulse, , 2012. . 3((4):):56--61. . DOI:10.1109/MPUL.2012.2196836http://doi.org/10.1109/MPUL.2012.2196836..
Y Mori, , , T Taniguchi, , , K Inoue, , , 等. . Development of a standing style transfer system able with novel crutches for a person with disabled lower limbs. . J Syst Des Dyn, , 2011. . 5((1):):83--93. . DOI:10.1299/jsdd.5.83http://doi.org/10.1299/jsdd.5.83..
National Spinal Cord Injury Statistical Center. . Spinal Cord Injury Facts and Figures at a Glance, , 2016. . https://www.nscisc.uab.edu/Public/Facts%202016.pdfhttps://www.nscisc.uab.edu/Public/Facts%202016.pdf, , ..
B Protection, , , M Labour. . Human Dimensions of Chinese Adults, GB 10000-1988. . National Standards of People's Republic of China, , 1988. ..
S Shimmyo, , , T Sato, , , K Ohnishi. . Biped walking pattern generation by using preview control based on three-mass model. . IEEE Trans Ind Electron, , 2013. . 60((11):):5137--5147. . DOI:10.1109/TIE.2012.2221111http://doi.org/10.1109/TIE.2012.2221111..
KA Strausser, , , TA Swift, , , AB Zoss, , , 等. . Prototype medical exoskeleton for paraplegic mobility: first experimental results. . ASME Dynamic Systems and Control Conf, , 2010. . p.453--458. . DOI:10.1115/DSCC2010-4261http://doi.org/10.1115/DSCC2010-4261..
M Talaty, , , A Esquenazi, , , JE Briceño. . Differentiating ability in users of the rewalkTM powered exoskeleton: an analysis of walking kinematics. . IEEE Int Conf on Rehabilitation Robotics, , 2013. . p.1--5. . DOI:10.1109/ICORR.2013.6650469http://doi.org/10.1109/ICORR.2013.6650469..
A Tsukahara, , , Y Hasegawa, , , K Eguchi, , , 等. . Restoration of gait for spinal cord injury patients using HAL with intention estimator for preferable swing speed. . IEEE Trans Neur Syst Rehab Eng, , 2015. . 23((2):):308--318. . DOI:10.1109/TNSRE.2014.2364618http://doi.org/10.1109/TNSRE.2014.2364618..
M Vukobratović, , , B Borovac. . Zero-moment point—thirty five years of its life. . Int J Humanoid Rob, , 2004. . 1((1):):157--173. . DOI:10.1142/S0219843604000083http://doi.org/10.1142/S0219843604000083..
SM Zhang, , , C Wang, , , XY Wu, , , 等. . Real time gait planning for a mobile medical exoskeleton with crutche. . IEEE Int Conf on Robotics and Biomimetics, , 2016. . p.2301--2306. . DOI:10.1109/ROBIO.2015.7419117http://doi.org/10.1109/ROBIO.2015.7419117..
AB Zoss, , , H Kazerooni, , , A Chu. . Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). . IEEE/ASME Trans Mech, , 2006. . 11((2):):128--138. . DOI:10.1109/TMECH.2006.871087http://doi.org/10.1109/TMECH.2006.871087..
关联资源
相关文章
相关作者
相关机构