FOLLOWUS
Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
Jung KIM, E-mail: jungkim@kaist.ac.kr
纸质出版日期:2019-03,
收稿日期:2018-09-27,
修回日期:2019-03-14,
Scan QR Code
Seulki KYEONG, Wonseok SHIN, Minjin YANG, 等. 基于表面肌电信号的行走环境与步态周期识别[J]. 信息与电子工程前沿(英文), 2019,20(3):342-352.
SEULKI KYEONG, WONSEOK SHIN, MINJIN YANG, et al. Recognition of walking environments and gait period by surface electromyography. [J]. Frontiers of information technology & electronic engineering, 2019, 20(3): 342-352.
Seulki KYEONG, Wonseok SHIN, Minjin YANG, 等. 基于表面肌电信号的行走环境与步态周期识别[J]. 信息与电子工程前沿(英文), 2019,20(3):342-352. DOI: 10.1631/FITEE.1800601.
SEULKI KYEONG, WONSEOK SHIN, MINJIN YANG, et al. Recognition of walking environments and gait period by surface electromyography. [J]. Frontiers of information technology & electronic engineering, 2019, 20(3): 342-352. DOI: 10.1631/FITEE.1800601.
在外骨骼机器人控制研究中,识别及预测操作者运动意图是一项很大挑战。外骨骼机器人是一种检测和驱动人体运动的机械动力装置,因其复杂的人机交互技术,需要使用很多不同类型传感器。当使用各种传感器时,需要选择数据类型以进行有效传感。肌电信号能在实际运动做出之前识别预期动作,并且可以缩短外骨骼机器人控制中的时间延迟。为应用下肢外骨骼帮助行走,本文工作旨在使用不同类型传感器(包括表面肌电信号传感器)识别行走环境和区分步态周期。为此,将地面反作用力、人机相互作用力、位置传感器和表面肌电信号传感器相结合,对4个受试者进行步态实验。本文展示了在行走环境与步态周期的识别中使用表面肌电信号及其他类型传感器的实验成果。选择不同传感器类型组合、表面肌电信号传感器不同位置组合以及表面肌电信号不同特征值组合,作为有效数据类型。实验结果表明,与使用单个力学传感器相比,将表面肌电信号传感器与其结合使用,可使识别结果得到很大改善。此外,在3种不同类型传感器的不同组合中,使用表面肌电信号与位置传感器信息的组合得出最高分类准确率。当使用全部4种类型传感器时,行走环境与步态周期分类准确率分别为96.1%与97.8%。在腿部5个表面肌电传感器不同位置组合里,股内侧肌和腓肠肌组合是最有效的2种肌肉类型组合。当仅使用表面肌电信号进行分类时,该组合在行走环境识别实验中,足跟接地前与足趾离地前的情况下,分类准确率分别为74.4%与71.7%;步态周期分类准确率为68%。两组有效的表面肌电信号特征值组合分别是"平均绝对值、过零点数"与"平均绝对值、波形长度"。"平均绝对值、过零点书"特征组合在行走环境识别实验中,在足跟接地前与足趾离地前情况下,分类准确率分别为80%与77.1%;步态周期分类准确率为75.5%。上述结果表明,表面肌电信号可有效用于控制外骨骼机器人。
Recognizing and predicting the movement and intention of the wearer in control of an exoskeleton robot is very challenging. It is difficult for exoskeleton robots
which measure and drive human movements
to interact with humans. Therefore
many different types of sensors are needed. When using various sensors
a data design is needed for effective sensing. An electromyographic (EMG) signal can be used to identify intended motion before the actual movement
and the delay time can be shortened via control of the exoskeleton robot. Before using a lower limb exoskeleton to help in walking
the aim of this work is to distinguish the walking environment and gait period using various sensors
including the surface electromyography (sEMG) sensor. For this purpose
a gait experiment was performed on four subjects using the ground reaction force
human–robot interaction force
and position sensors with sEMG sensors. The purpose of this paper is to show progress with the use of sEMG when recognizing walking environments and the gait period with other sensors. For effective data design
we used a combination of sensor types
sEMG sensor locations
and sEMG features. The results obtained using an individual mechanical sensor together with sEMG showed improvement compared to the case of using an individual sensor
and the combination of sEMG and position information showed the best performance in the same number of combinations of three sensors. When four sensor combinations were used
the environment classification accuracy was 96.1%
and the gait period classification accuracy was 97.8%. Vastus medialis (VM) and gastrocnemius (GAS) were the most effective combinations of two muscle types among the five sEMG sensor locations on the legs
and the results were 74.4% in pre-heel contact (preHC) and 71.7% in pre-toe-off (preTO) for environment classification
and 68.0% for gait period classification
when using only the sEMG sensor. The two effective sEMG feature combinations were "mean absolute value (MAV)
zero crossings (ZC)" and "MAV
waveform length (WL)"
and the "MAV
ZC" results were 80.0%
77.1%
and 75.5%. These results suggest that the sEMG signal can be effectively used to control an exoskeleton robot.
行走环境步态周期表面肌电信号外骨骼
environmentGait PeriodSurface electromyography (sEMG)Exoskeleton
M Cifrek, , , V Medved, , , S Tonković, , , 等. . Surface EMG based muscle fatigue evaluation in biomechanics. . Clin Biomech, , 2009. . 24((4):):327--340. . DOI:10.1016/j.clinbiomech.2009.01.010http://doi.org/10.1016/j.clinbiomech.2009.01.010..
G Colombo, , , M Joerg, , , R Schreier, , , 等. . Treadmill training of paraplegic patients using a robotic orthosis. . J Rehabil Res Dev, , 2000. . 37((6):):693--700. . ..
DG Dotov, , , BG Bardy, , , S Dalla Bella. . The role of environmental constraints in walking: effects of steering and sharp turns on gait dynamics. . Sci Rep, , 2016. . 628374DOI:10.1038/srep28374http://doi.org/10.1038/srep28374..
L Du, , , F Zhang, , , M Liu, , , 等. . Toward design of an environment-aware adaptive locomotion-mode-recogni-tion system. . IEEE Trans Biomed Eng, , 2012. . 59((10):):2716--2725. . DOI:10.1109/TBME.2012.2208641http://doi.org/10.1109/TBME.2012.2208641..
A Esquenazi, , , M Talaty, , , A Packel, , , 等. . The rewalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. . Am J Phys Med Rehabil, , 2012. . 91((11):):911--921. . DOI:10.1097/PHM.0b013e318269d9a3http://doi.org/10.1097/PHM.0b013e318269d9a3..
MT Farrell. . Pattern Classification of Terrain during Amputee Walking. . PhD Thesis, Massachusetts Institute of Technology, Massachusetts, USA, , 2013. ..
M Goršič, , , R Kamnik, , , L Ambrožič, , , 等. . Online phase detection using wearable sensors for walking with a robotic prosthesis. . Sensors, , 2014. . 14((2):):2776--2794. . DOI:10.3390/s140202776http://doi.org/10.3390/s140202776..
E Guizzo, , , H Goldstein. . The rise of the body bots [robotic exoskeletons]. . IEEE Spectr, , 2005. . 42((10):):50--56. . DOI:10.1109/MSPEC.2005.1515961http://doi.org/10.1109/MSPEC.2005.1515961..
R Gupta, , , R Agarwal. . Continuous human locomotion identification for lower limb prosthesis control. . CSI Trans ICT, , 2018. . 6((1):):17--31. . DOI:10.1007/s40012-017-0178-4http://doi.org/10.1007/s40012-017-0178-4..
H Huang, , , TA Kuiken, , , RD Lipschutz. . A strategy for identifying locomotion modes using surface electromyo-graphy. . IEEE Trans Biomed Eng, , 2009. . 56((1):):65--73. . DOI:10.1109/TBME.2008.2003293http://doi.org/10.1109/TBME.2008.2003293..
H Huang, , , F Zhang, , , LJ Hargrove, , , 等. . Continuous locomotion-mode identification for prosthetic legs based on neuromuscular–mechanical fusion. . IEEE Trans Biomed Eng, , 2011. . 58((10):):2867--2875. . DOI:10.1109/TBME.2011.2161671http://doi.org/10.1109/TBME.2011.2161671..
DW Jin, , , JK Yang, , , RH Zhang, , , 等. . Terrain identification for prosthetic knees based on electromyo- graphic signal features. . Tsinghua Sci Technol, , 2006. . 11((1):):74--79. . DOI:10.1016/S1007-0214(06)70157-2http://doi.org/10.1016/S1007-0214(06)70157-2..
JY Jung, , , W Heo, , , H Yang, , , 等. . A neural network-based gait phase classification method using sensors equipped on lower limb exoskeleton robots. . Sensors, , 2015. . 15((11):):27738--27759. . DOI:10.3390/s151127738http://doi.org/10.3390/s151127738..
H Kawamoto, , , S Lee, , , S Kanbe, , , 等. . Power assist method for HAL-3 using EMG-based feedback controller. . Proc IEEE Int Conf on Systems, Man and Cybernetics, , 2003. . p.1648--1653. . DOI:10.1109/ICSMC.2003.1244649http://doi.org/10.1109/ICSMC.2003.1244649..
H Kim, , , YJ Shin, , , J Kim. . Kinematic-based locomotion mode recognition for power augmentation exoskeleton. . Int J Adv Rob Syst, , 2017a. . 14((5):):1--14. . DOI:10.1177/1729881417730321http://doi.org/10.1177/1729881417730321..
H Kim, , , YJ Shin, , , J Kim. . Design and locomotion control of a hydraulic lower extremity exoskeleton for mobility augmentation. . Mechatronics, , 2017b. . 4632--45. . DOI:10.1016/j.mechatronics.2017.06.009http://doi.org/10.1016/j.mechatronics.2017.06.009..
K Kong, , , M Tomizuka. . A gait monitoring system based on air pressure sensors embedded in a shoe. . IEEE/ASME Trans Mechatron, , 2009. . 14((3):):358--370. . DOI:10.1109/TMECH.2008.2008803http://doi.org/10.1109/TMECH.2008.2008803..
BE Lawson, , , HA Varol, , , A Huff, , , 等. . Control of stair ascent and descent with a powered transfemoral prosthesis. . IEEE Trans Neur Syst Rehabil Eng, , 2013. . 21((3):):466--473. . DOI:10.1109/TNSRE.2012.2225640http://doi.org/10.1109/TNSRE.2012.2225640..
T Lenzi, , , SMM de Rossi, , , N Vitiello, , , 等. . Intention- based EMG control for powered exoskeletons. . IEEE Trans Biomed Eng, , 2012. . 59((8):):2180--2190. . DOI:10.1109/TBME.2012.2198821http://doi.org/10.1109/TBME.2012.2198821..
T Lenzi, , , MC Carrozza, , , SK Agrawal. . Powered hip exoskeletons can reduce the user's hip and ankle muscle activations during walking. . IEEE Trans Neur Syst Rehabil Eng, , 2013. . 21((6):):938--948. . DOI:10.1109/TNSRE.2013.2248749http://doi.org/10.1109/TNSRE.2013.2248749..
CL Lewis, , , DP Ferris. . Invariant hip moment pattern while walking with a robotic hip exoskeleton. . J Biomech, , 2011. . 44((5):):789--793. . DOI:10.1016/j.jbiomech.2011.01.030http://doi.org/10.1016/j.jbiomech.2011.01.030..
Y Long, , , ZJ Du, , , WD Wang, , , 等. . PSO-SVM-based online locomotion mode identification for rehabilitation robotic exoskeletons. . Sensors, , 2016. . 16((9):):1--20. . DOI:10.3390/s16091408http://doi.org/10.3390/s16091408..
U Martinez-Hernandez, , , A Rubio-Solis, , , AA Dehghani-Sanij. . Recognition of walking activity and prediction of gait periods with a CNN and first-order MC strategy. . 7th IEEE Int Conf on Biomedical Robotics and Biomechatronics, , 2018. . p.897--902. . DOI:10.1109/BIOROB.2018.8487220http://doi.org/10.1109/BIOROB.2018.8487220..
DA Neumann. . Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation. . Mosby, Inc., St. Louis, USA, , 2002. ..
J Perry, , , JR Davids. . Gait analysis: normal and pathological function. . J Pediatr Orthop, , 1992. . 12((6):):815..
Y Sankai. . HAL: hybrid assistive limb based on cybernics. . In: Kaneko M, Nakamura Y (Eds.), Robotics Research. Springer Berlin Heidelberg, , 2010. . p.25--34. . DOI:10.1007/978-3-642-14743-2_3http://doi.org/10.1007/978-3-642-14743-2_3..
D Sanz-Merodio, , , M Cestari, , , JC Arevalo, , , 等. . Generation and control of adaptive gaits in lower-limb exoskeletons for motion assistance. . Adv Robot, , 2014. . 28((5):):329--338. . DOI:10.1080/01691864.2013.867284http://doi.org/10.1080/01691864.2013.867284..
D Sasaki, , , T Noritsugu, , , M Takaiwa. . Development of pneumatic lower limb power assist wear driven with wearable air supply system. . IEEE/RSJ Int Conf on Intelligent Robots and Systems, , 2013. . p.4440--4445. . DOI:10.1109/IROS.2013.6696994http://doi.org/10.1109/IROS.2013.6696994..
KA Strausser, , , H Kazerooni. . The development and testing of a human machine interface for a mobile medical exoskeleton. . IEEE/RSJ Int Conf on Intelligent Robots and Systems, , 2011. . p.4911--4916. . DOI:10.1109/IROS.2011.6095025http://doi.org/10.1109/IROS.2011.6095025..
HA Varol, , , F Sup, , , M Goldfarb. . Multiclass real-time intent recognition of a powered lower limb prosthesis. . IEEE Trans Biomed Eng, , 2010. . 57((3):):542--551. . DOI:10.1109/TBME.2009.2034734http://doi.org/10.1109/TBME.2009.2034734..
JF Veneman, , , R Kruidhof, , , EEG Hekman, , , 等. . Design and evaluation of the lopes exoskeleton robot for interactive gait rehabilitation. . IEEE Trans Neur Syst Rehabil Eng, , 2007. . 15((3):):379--386. . DOI:10.1109/TNSRE.2007.903919http://doi.org/10.1109/TNSRE.2007.903919..
CJ Walsh, , , K Endo, , , H Herr. . A quasi-passive leg exoskeleton for load-carrying augmentation. . Int J Hum Robot, , 2007. . 4((3):):487--506. . DOI:10.1142/S0219843607001126http://doi.org/10.1142/S0219843607001126..
TF Yan, , , M Cempini, , , CM Oddo, , , 等. . Review of assistive strategies in powered lower-limb orthoses and exoskeletons. . Robot Auton Syst, , 2015. . 64120--136. . DOI:10.1016/j.robot.2014.09.032http://doi.org/10.1016/j.robot.2014.09.032..
AJ Young, , , DP Ferris. . State of the art and future directions for lower limb robotic exoskeletons. . IEEE Trans Neur Syst Rehabil Eng, , 2017. . 25((2):):171--182. . DOI:10.1109/TNSRE.2016.2521160http://doi.org/10.1109/TNSRE.2016.2521160..
AJ Young, , , A Simon, , , LJ Hargrove. . An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes. . 35th Annual Int Conf IEEE Engineering in Medicine and Biology Society, , 2013. . p.1587--1590. . DOI:10.1109/EMBC.2013.6609818http://doi.org/10.1109/EMBC.2013.6609818..
AJ Young, , , TA Kuiken, , , LJ Hargrove. . Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. . J Neur Eng, , 2014. . 11((5):):056021DOI:10.1088/1741-2560/11/5/056021http://doi.org/10.1088/1741-2560/11/5/056021..
F Zhang, , , Z Fang, , , M Liu, , , 等. . Preliminary design of a terrain recognition system. . Annual Int Conf IEEE Engineering in Medicine and Biology Society, , 2011. . p.5452--5455. . DOI:10.1109/IEMBS.2011.6091391http://doi.org/10.1109/IEMBS.2011.6091391..
AB Zoss, , , H Kazerooni, , , A Chu. . Biomechanical design of the Berkeley lower extremity exoskeleton (bleex). . IEEE/ASME Trans Mechatron, , 2006. . 11((2):):128--138. . DOI:10.1109/TMECH.2006.871087http://doi.org/10.1109/TMECH.2006.871087..
关联资源
相关文章
相关作者
相关机构