FOLLOWUS
Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China
Photonics Research Center, Guilin University of Electronic Technology, Guilin 541004, China
Li-bo YUAN, E-mail: lbyuan@vip.sina.com
纸质出版日期:2019-04,
收稿日期:2019-01-09,
修回日期:2019-04-17,
Scan QR Code
王廷云, 庞拂飞, 黄素娟, 等. 新型硅基光纤研究进展[J]. 信息与电子工程前沿(英文), 2019,20(4):481-489.
TING-YUN WANG, FU-FEI PANG, SU-JUAN HUANG, et al. Recent developments in novel silica-based optical fibers. [J]. Frontiers of information technology & electronic engineering, 2019, 20(4): 481-489.
王廷云, 庞拂飞, 黄素娟, 等. 新型硅基光纤研究进展[J]. 信息与电子工程前沿(英文), 2019,20(4):481-489. DOI: 10.1631/FITEE.1900017.
TING-YUN WANG, FU-FEI PANG, SU-JUAN HUANG, et al. Recent developments in novel silica-based optical fibers. [J]. Frontiers of information technology & electronic engineering, 2019, 20(4): 481-489. DOI: 10.1631/FITEE.1900017.
综述了两类新型光纤的最新研究进展,主要包括掺铋、铝、铈等元素的二氧化硅光纤和微结构多芯光纤。作为掺杂特殊元素的光纤,铋铝共掺杂二氧化硅光纤的荧光光谱波长为1000到1400 nm,半高宽(FWHM)约为150 nm,可用于光纤放大器和激光系统。铈掺杂光纤的激发和发射中心波长分别约为340和430 nm。在纤芯中掺杂高浓度氧化铝的蓝宝石衍生光纤(SDF)经电弧放电加热、冷却处理后可形成莫来石。SDF可进一步开发为能承受1200°C高温的法布里-珀罗干涉仪,用于高温传感。由于强消逝场,微结构多芯光纤被广泛应用于生物光纤传感、化学测量等领域。同轴芯光纤是一种具有两个同轴双波导纤芯的新型光纤。将光纤端制备成锥状,能产生紧致聚焦光场,可应用于光学捕获和微粒操纵。本文讨论了这些新型光纤的研究进展。
We have summarized our recent work in the area of novel silica-based optical fibers
which can be classified into two types: silica optical fiber doped with special elements including Bi
Al
and Ce
and micro-structured multi-core fibers. For element-doped optical fiber
the Bi/Al co-doped silica fibers could exhibit a fluorescence spectrum covering the wavelength range between 1000 and 1400 nm with a full width at half maximum (FWHM) of about 150 nm
which enables its use in fiber amplifiers and laser systems. The Ce-doped fiber's center wavelengths of excitation and emission are about 340 and 430 nm
respectively. The sapphire-derived fiber (SDF) with high alumina dopant concentration in the core can form mullite through heating and cooling with arc-discharge treatment. This SDF can be further developed for an intrinsic Fabry-Perot interferometric that can withstand 1200 ℃
which allows it to be used in high-temperature sensing applications. Owing to the strong evanescent field
micro-structured multi-core fiber can be used in a wide range of applications in biological fiber optic sensing
chemical measurement
and interference-related devices. Coaxial-core optical fiber is another novel kind of silica-based optical fiber that has two coaxial waveguide cores and can be used for optical trapping and micro-particle manipulation by generating a highly focused conical optical field. The recent developments of these novel fibers are discussed.
光纤光纤器件基于二氧化硅特种光纤
Optical fiberFiber optic deviceSilica-based special fiber
M Alshourbagy, , , S Bigotta, , , D Herbert, , , 等. . Optical and scintillation properties of Ce3+ doped YALO3 crystal fibers grown by μ-pulling down technique. . J Cryst Growth, , 2007. . 303((2):):500--505. . DOI:10.1016/j.jcrysgro.2007.01.024http://doi.org/10.1016/j.jcrysgro.2007.01.024..
F Benabid, , , JC Knight, , , PJSt Russell. . Particle levitation and guidance in hollow-core photonic crystal fiber. . Opt Expr, , 2002. . 10((21):):1195--1203. . DOI:10.1364/OE.10.001195http://doi.org/10.1364/OE.10.001195..
H Chen, , , M Buric, , , PR Ohodnicki, , , 等. . Review and perspective: sapphire optical fiber cladding development for harsh environment sensing. . Appl Phys Rev, , 2018. . 5((1):):011102DOI:10.1063/1.5010184http://doi.org/10.1063/1.5010184..
TL Cheng, , , Y Kanou, , , DH Deng, , , 等. . Fabrication and characterization of a hybrid four-hole AsSe2-As2S5 microstructured optical fiber with a large refractive index difference. . Opt Expr, , 2014. . 22((11):):13322--13329. . DOI:10.1364/OE.22.013322http://doi.org/10.1364/OE.22.013322..
YS Chu, , , R Jing, , , JZ Zhang, , , 等. . Ce3+/Yb3+/Er3+ triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers. . Sci Rep, , 2016. . 633865DOI:10.1038/srep33865http://doi.org/10.1038/srep33865..
HC Deng, , , CC Qi, , , XT Zhang, , , 等. . Highly focused conical optical field for pico-newton scale force sensing. . J Lightw Technol, , 2015. . 33((12):):2486--2491. . DOI:10.1109/JLT.2014.2377118http://doi.org/10.1109/JLT.2014.2377118..
HC Deng, , , Y Zhang, , , TT Yuan, , , 等. . Fiber-based optical gun for particle shooting. . ACS Photon, , 2017. . 4((3):):642--648. . DOI:10.1021/acsphotonics.6b01010http://doi.org/10.1021/acsphotonics.6b01010..
EM Dianov. . Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers. . Light Sci Appl, , 2012. . 1((5):):e12DOI:10.1038/lsa.2012.12http://doi.org/10.1038/lsa.2012.12..
P Dragic, , , J Ballato, , , A Ballato, , , 等. . Mass density and the brillouin spectroscopy of aluminosilicate optical fibers. . Opt Mater Expr, , 2012a. . 2((11):):1641--1654. . DOI:10.1364/OME.2.001641http://doi.org/10.1364/OME.2.001641..
P Dragic, , , T Hawkins, , , P Foy, , , 等. . Sapphire-derived all-glass optical fibres. . Nat Photon, , 2012b. . 6((9):):627--633. . DOI:10.1038/nphoton.2012.182http://doi.org/10.1038/nphoton.2012.182..
VV Dvoyrin, , , VM Mashinsky, , , LI Bulatov, , , 等. . Bismuth-doped-glass optical fibers—a new active medium for lasers and amplifiers. . Opt Lett, , 2006. . 31((20):):2966--2968. . DOI:10.1364/OL.31.002966http://doi.org/10.1364/OL.31.002966..
BJ Eggleton, , , C Kerbage, , , PS Westbrook, , , 等. . Microstructured optical fiber devices. . Opt Expr, , 2001. . 9((13):):698--713. . DOI:10.1364/OE.9.000698http://doi.org/10.1364/OE.9.000698..
T Elsmann, , , A Lorenz, , , NS Yazd, , , 等. . High temperature sensing with fiber Bragg gratings in sapphire-derived all-glass optical fibers. . Opt Expr, , 2014. . 22((22):):26825--26833. . DOI:10.1364/OE.22.026825http://doi.org/10.1364/OE.22.026825..
Y Fujimoto, , , M Nakatsuka. . Optical amplification in bismuth-doped silica glass. . Appl Phys Lett, , 2003. . 82((19):):3325DOI:10.1063/1.1575492http://doi.org/10.1063/1.1575492..
FL Galeener. . Band limits and the vibrational spectra of tetrahedral glasses. . Phys Rev B, , 1979. . 19((8):):4292--4297. . DOI:10.1103/PhysRevB.19.4292http://doi.org/10.1103/PhysRevB.19.4292..
T Geernaert, , , G Luyckx, , , E Voet, , , 等. . Transversal load sensing with fiber Bragg gratings in microstructured optical fibers. . IEEE Photon Technol Lett, , 2008. . 21((1):):6--8. . DOI:10.1109/LPT.2008.2007915http://doi.org/10.1109/LPT.2008.2007915..
SM George. . Atomic layer deposition: an overview. . Chem Rev, , 2009. . 110((1):):111--131. . DOI:10.1021/cr900056bhttp://doi.org/10.1021/cr900056b..
L Gherardi, , , P Marelli, , , A Serra, , , 等. . Radiation effects on doped silica-core optical fibers. . Nucl Phys B, , 1993. . 32436--440. . DOI:10.1016/0920-5632(93)90057-Dhttp://doi.org/10.1016/0920-5632(93)90057-D..
D Grobnic, , , SJ Mihailov, , , J Ballato, , , 等. . Type Ⅰ and Ⅱ Bragg gratings made with infrared femtosecond radiation in high and low alumina content aluminosilicate optical fibers. . Optica, , 2015. . 2((4):):313--322. . DOI:10.1364/OPTICA.2.000313http://doi.org/10.1364/OPTICA.2.000313..
CY Guan, , , FJ Tian, , , Q Dai, , , 等. . Characteristics of embedded-core hollow optical fiber. . Opt Expr, , 2011. . 19((21):):20069--20078. . DOI:10.1364/OE.19.020069http://doi.org/10.1364/OE.19.020069..
YG Han, , , YJ Lee, , , GH Kim, , , 等. . Transmission characteristics of fiber Bragg gratings written in holey fibers corresponding to air-hole size and their application. . IEEE Photon Technol Lett, , 2006. . 18((16):):1783--1785. . DOI:10.1109/LPT.2006.880762http://doi.org/10.1109/LPT.2006.880762..
M Hautakorpi, , , M Mattinen, , , H Ludvigsen. . Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. . Opt Expr, , 2008. . 16((12):):8427--8432. . DOI:10.1364/OE.16.008427http://doi.org/10.1364/OE.16.008427..
L Hong, , , FF Pang, , , HH Liu, , , 等. . Refractive index modulation by crystallization in sapphire-derived fiber. . IEEE Photon Technol Lett, , 2017. . 29((9):):723--726. . DOI:10.1109/LPT.2017.2682194http://doi.org/10.1109/LPT.2017.2682194..
J Huang, , , XW Lan, , , Y Song, , , 等. . Microwave interrogated sapphire fiber Michelson interferometer for high temperature sensing. . IEEE Photon Technol Lett, , 2015. . 27((13):):1398--1401. . DOI:10.1109/LPT.2015.2422136http://doi.org/10.1109/LPT.2015.2422136..
C Jewart, , , KP Chen, , , B McMillen, , , 等. . Sensitivity enhancement of fiber Bragg gratings to transverse stress by using microstructural fibers. . Opt Lett, , 2006. . 31((15):):2260--2262. . DOI:10.1364/OL.31.002260http://doi.org/10.1364/OL.31.002260..
XQ Jin, , , A Gomez, , , K Shi, , , 等. . Mode coupling effects in ring-core fibers for space-division multiplexing systems. . J Lightw Technol, , 2016. . 34((14):):3365--3372. . DOI:10.1109/JLT.2016.2564991http://doi.org/10.1109/JLT.2016.2564991..
LF Koao, , , HC Swart, , , RI Obed, , , 等. . Synthesis and characterization of Ce3+ doped silica (SiO2) nanoparticles. . J Lumin, , 2011. . 131((6):):1249--1254. . DOI:10.1016/j.jlumin.2010.10.038http://doi.org/10.1016/j.jlumin.2010.10.038..
B Liu, , , ZZ Yu, , , C Hill, , , 等. . Sapphire-fiber-based distributed high-temperature sensing system. . Opt Lett, , 2016. . 41((18):):4405--4408. . DOI:10.1364/OL.41.004405http://doi.org/10.1364/OL.41.004405..
CN Liu, , , YC Huang, , , YS Lin, , , 等. . Fabrication and characteristics of Ce-doped fiber for high-resolution OCT source. . IEEE Photon Technol Lett, , 2014. . 26((15):):1499--1502. . DOI:10.1109/LPT.2014.2327127http://doi.org/10.1109/LPT.2014.2327127..
A Pasquarello, , , R Car. . Identification of Raman defect lines as signatures of ring structures in vitreous silica. . Phys Rev Lett, , 1998. . 80((23):):5145--5147. . DOI:10.1103/PhysRevLett.80.5145http://doi.org/10.1103/PhysRevLett.80.5145..
F Poletti. . Nested antiresonant nodeless hollow core fiber. . Opt Expr, , 2014. . 22((20):):23807--23828. . DOI:10.1364/OE.22.023807http://doi.org/10.1364/OE.22.023807..
RL Puurunen. . Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. . J Appl Phys, , 2005. . 97((12):):121301DOI:10.1063/1.1940727http://doi.org/10.1063/1.1940727..
S Rizzolo, , , E Marin, , , A Morana, , , 等. . Investigation of coating impact on OFDR optical remote fiber-based sensors performances for their integration in high temperature and radiation environments. . J Lightw Technol, , 2016. . 34((19):):4460--4465. . DOI:10.1109/JLT.2016.2552459http://doi.org/10.1109/JLT.2016.2552459..
PSJ Russell. . Photonic-crystal fibers. . J Lightw Technol, , 2006. . 24((12):):4729--4749. . DOI:10.1109/JLT.2006.885258http://doi.org/10.1109/JLT.2006.885258..
F Seng, , , N Stan, , , R King, , , 等. . Optical sensing of electric fields in harsh environments. . J Lightw Technol, , 2017. . 35((4):):669--676. . DOI:10.1109/JLT.2016.2631149http://doi.org/10.1109/JLT.2016.2631149..
XX Sun, , , JX Wen, , , Q Guo, , , 等. . Fluorescence properties and energy level structure of Ce-doped silica fiber materials. . Opt Mater Expr, , 2017. . 7((3):):751--759. . DOI:10.1364/OME.7.000751http://doi.org/10.1364/OME.7.000751..
FJ Tian, , , LB Yuan, , , Q Dai, , , 等. . Embedded multicore hollow fiber with high birefringence. . Appl Opt, , 2011. . 50((33):):6162--6167. . DOI:10.1364/AO.50.006162http://doi.org/10.1364/AO.50.006162..
A Vedda, , , N Chiodini, , , Martino D Di, , , 等. . Ce3+-doped fibers for remote radiation dosimetry. . Appl Phys Lett, , 2004. . 85((26):):6356DOI:10.1063/1.1840127http://doi.org/10.1063/1.1840127..
AB Wang, , , S Gollapudi, , , KA Murphy, , , 等. . Sapphire-fiber-based intrinsic Fabry-Perot interferometer. . Opt Lett, , 1992. . 17((14):):1021--1023. . DOI:10.1364/OL.17.001021http://doi.org/10.1364/OL.17.001021..
TY Wang, , , XL Zeng, , , JX Wen, , , 等. . Characteristics of photoluminescence and Raman spectra of INP doped silica fiber. . Appl Surf Sci, , 2009. . 255((17):):7791--7793. . DOI:10.1016/j.apsusc.2009.04.179http://doi.org/10.1016/j.apsusc.2009.04.179..
JX Wen, , , J Wang, , , YH Dong, , , 等. . Photoluminescence properties of Bi/Al-codoped silica optical fiber based on atomic layer deposition method. . Appl Surf Sci, , 2015. . 349287--291. . DOI:10.1016/j.apsusc.2015.04.138http://doi.org/10.1016/j.apsusc.2015.04.138..
HM Xie, , , P Dabkiewicz, , , R Ulrich, , , 等. . Side-hole fiber for fiber-optic pressure sensing. . Opt Lett, , 1986. . 11((5):):333--335. . DOI:10.1364/OL.11.000333http://doi.org/10.1364/OL.11.000333..
J Xu, , , HH Liu, , , FF Pang, , , 等. . Cascaded Mach-Zehnder interferometers in crystallized sapphire-derived fiber for temperature-insensitive filters. . Opt Mater Expr, , 2017. . 7((4):):1406DOI:10.1364/OME.7.001406http://doi.org/10.1364/OME.7.001406..
HW Yan, , , ET Zhang, , , BY Zhao, , , 等. . Free-space propagation of guided optical vortices excited in an annular core fiber. . Opt Expr, , 2012. . 20((16):):17904--17915. . DOI:10.1364/OE.20.017904http://doi.org/10.1364/OE.20.017904..
XH Yang, , , QK Zhao, , , XX Qi, , , 等. . In-fiber integrated gas pressure sensor based on a hollow optical fiber with two cores. . Sens Actuat A, , 2018. . 27223--27. . DOI:10.1016/j.sna.2018.01.055http://doi.org/10.1016/j.sna.2018.01.055..
Z Yu, , , ZH Liu, , , J Yang, , , 等. . A non-contact single optical fiber multi-optical tweezers probe: design and fabrication. . Opt Commun, , 2012. . 285((20):):4068--4071. . DOI:10.1016/j.optcom.2012.06.025http://doi.org/10.1016/j.optcom.2012.06.025..
LB Yuan, , , ZH Liu, , , J Yang, , , 等. . Twin-core fiber optical tweezers. . Opt Expr, , 2008. . 16((7):):4559--4566. . DOI:10.1364/OE.16.004559http://doi.org/10.1364/OE.16.004559..
TT Yuan, , , X Zhong, , , CY Guan, , , 等. . Long period fiber grating in two-core hollow eccentric fiber. . Opt Expr, , 2015. . 23((26):):33378--33385. . DOI:10.1364/OE.23.033378http://doi.org/10.1364/OE.23.033378..
JZ Zhang, , , ZM Sathi, , , YH Luo, , , 等. . Toward an ultra-broadband emission source based on the bismuth and erbium co-doped optical fiber and a single 830nm laser diode pump. . Opt Expr, , 2013. . 21((6):):7786--7792. . DOI:10.1364/OE.21.007786http://doi.org/10.1364/OE.21.007786..
HY Zhao, , , G Farrell, , , PF Wang, , , 等. . Investigation of particle harmonic oscillation using four-core fiber integrated twin-tweezers. . IEEE Photon Technol Lett, , 2016. . 28((4):):461--464. . DOI:10.1109/LPT.2015.2499309http://doi.org/10.1109/LPT.2015.2499309..
QC Zhao, , , YH Luo, , , WY Wang, , , 等. . Enhanced broadband near-IR luminescence and gain spectra of bismuth/ erbium co-doped fiber by 830 and 980 nm dual pumping. . AIP Adv, , 2017. . 7((4):):045012DOI:10.1063/1.4981903http://doi.org/10.1063/1.4981903..
L Zhu, , , GX Zhu, , , AD Wang, , , 等. . 18 km low-crosstalk OAM+WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation. . Opt Lett, , 2018. . 43((8):):1890--1893. . DOI:10.1364/OL.43.001890http://doi.org/10.1364/OL.43.001890..
关联资源
相关文章
相关作者
相关机构