FOLLOWUS
Department of Mathematics, Bharathiar University, Coimbatore 641046, India
School of Mathematics, Southeast University, Nanjing 210096, China
School of Automation, Southeast University, Nanjing 210096, China
[ "K. UDHAYAKUMAR, E-mail: udhai512@gmail.com" ]
[ "R. RAKKIYAPPAN, E-mail: rakkigru@gmail.com" ]
[ "Jin-de CAO, E-mail: jdcao@seu.edu.cn" ]
[ "Xue-gang TAN, E-mail: xgtan_sde@163.com" ]
纸质出版日期:2020-02,
收稿日期:2019-08-14,
修回日期:2019-12-04,
Scan QR Code
K. UDHAYAKUMAR, R. RAKKIYAPPAN, 曹进德, 等. 分数阶脉冲四元数神经网络多平衡点的Mittag-Leffler稳定性分析[J]. 信息与电子工程前沿(英文), 2020,21(2):234-246.
UDHAYAKUMAR K., RAKKIYAPPAN R., CAO JIN-DE, et al. Mittag-Leffler stability analysis of multiple equilibrium points in impulsive fractional-order quaternion-valued neural networks. [J]. Frontiers of information technology & electronic engineering, 2020, 21(2): 234-246.
K. UDHAYAKUMAR, R. RAKKIYAPPAN, 曹进德, 等. 分数阶脉冲四元数神经网络多平衡点的Mittag-Leffler稳定性分析[J]. 信息与电子工程前沿(英文), 2020,21(2):234-246. DOI: 10.1631/FITEE.1900409.
UDHAYAKUMAR K., RAKKIYAPPAN R., CAO JIN-DE, et al. Mittag-Leffler stability analysis of multiple equilibrium points in impulsive fractional-order quaternion-valued neural networks. [J]. Frontiers of information technology & electronic engineering, 2020, 21(2): 234-246. DOI: 10.1631/FITEE.1900409.
研究分数阶四元数值神经网络(quaternion-valued neural networks
QVNNs)的多重Mittag-Leffler稳定性问题。利用激活函数的几何性质和李普希茨条件,分析系统平衡点的存在性。此外,利用李雅普诺夫直接法研究分数阶脉冲四元素神经网络的多平衡点的全局Mittag-Leffler稳定性。最后,通过仿真验证主要结果的有效性和可行性。
In this study
we investigate the problem of multiple Mittag-Leffler stability analysis for fractional-order quaternion-valued neural networks (QVNNs) with impulses. Using the geometrical properties of activation functions and the Lipschitz condition
the existence of the equilibrium points is analyzed. In addition
the global Mittag-Leffler stability of multiple equilibrium points for the impulsive fractional-order QVNNs is investigated by employing the Lyapunov direct method. Finally
simulation is performed to illustrate the effectiveness and validity of the main results obtained.
Mittag-Leffler稳定性分数阶四元数神经网络脉冲
Mittag-Leffler stabilityFractional-orderQuaternion-valued neural networksImpulse
A Abdurahman, , , HJ Jiang, , , ZD Teng. . Finite-time synchronization for memristor-based neural networks with time-varying delays. . Neur Netw, , 2015. . 6920--28. . DOI:10.1016/j.neunet.2015.04.015http://doi.org/10.1016/j.neunet.2015.04.015..
JD Cao, , , M Xiao. . Stability and Hopf bifurcation in a simplified BAM neural network with two time delays. . IEEE Trans Neur Netw, , 2007. . 18((2):):416--430. . DOI:10.1109/TNN.2006.886358http://doi.org/10.1109/TNN.2006.886358..
JJ Chen, , , ZG Zeng, , , P Jiang. . Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks. . Neur Netw, , 2014. . 511--8. . DOI:10.1016/j.neunet.2013.11.016http://doi.org/10.1016/j.neunet.2013.11.016..
XF Chen, , , QK Song, , , ZS Li, , , 等. . Stability analysis of continuous-time and discrete-time quaternion-valued neural networks with linear threshold neurons. . IEEE Trans Neur Netw Learn Syst, , 2017. . 29((7):):2769--2781. . DOI:10.1109/TNNLS.2017.2704286http://doi.org/10.1109/TNNLS.2017.2704286..
J Hu, , , CN Zeng, , , J Tan. . Boundedness and periodicity for linear threshold discrete-time quaternion-valued neural network with time-delays. . Neurocomputing, , 2017. . 267417--425. . DOI:10.1016/j.neucom.2017.06.047http://doi.org/10.1016/j.neucom.2017.06.047..
Y Huang, , , H Zhang, , , Z Wang. . Multistability and multiperiodicity of delayed bidirectional associative memory neural networks with discontinuous activation functions. . Appl Math Comput, , 2012. . 219((3):):899--910. . DOI:10.1016/j.amc.2012.06.068http://doi.org/10.1016/j.amc.2012.06.068..
YJ Huang, , , CH Li. . Backward bifurcation and stability analysis of a network-based SIS epidemic model with saturated treatment function. . Phys A, , 2019. . 527121407DOI:10.1016/j.physa.2019.121407http://doi.org/10.1016/j.physa.2019.121407..
H Khan, , , J Gmez-Aguilar, , , A Khan, , , 等. . Stability analysis for fractional order advection--reaction diffusion system. . Phys A, , 2019. . 521737--751. . DOI:10.1016/j.physa.2019.01.102http://doi.org/10.1016/j.physa.2019.01.102..
AA Kilbas, , , HM Srivastava, , , JJ Trujillo. . Theory and Applications of Fractional Differential Equations. . Elsevier, Amsterdam, the Netherlands, , 2006. ..
N Li, , , WX Zheng. . Passivity analysis for quaternion-valued memristor-based neural networks with time-varying delay. . IEEE Trans Neur Netw Learn Syst, , 2020. . 31((2):):39--650. . DOI:10.1109/TNNLS.2019.2908755http://doi.org/10.1109/TNNLS.2019.2908755..
X Li, , , DWC Ho, , , JD Cao. . Finite-time stability and settling-time estimation of nonlinear impulsive systems. . Automatica, , 2019. . 99361--368. . DOI:10.1016/j.automatica.2018.10.024http://doi.org/10.1016/j.automatica.2018.10.024..
XD Li, , , YH Ding. . Razumikhin-type theorems for time-delay systems with persistent impulses. . Syst Contr Lett, , 2017. . 10722--27. . DOI:10.1016/j.sysconle.2017.06.007http://doi.org/10.1016/j.sysconle.2017.06.007..
XD Li, , , JH Wu. . Stability of nonlinear differential systems with state-dependent delayed impulses. . Automatica, , 2016. . 6463--69. . DOI:10.1016/j.automatica.2015.10.002http://doi.org/10.1016/j.automatica.2015.10.002..
XD Li, , , XL Zhang, , , SL Song. . Effect of delayed impulses on input-to-state stability of nonlinear systems. . Automatica, , 2017. . 76378--382. . DOI:10.1016/j.automatica.2016.08.009http://doi.org/10.1016/j.automatica.2016.08.009..
P Liu, , , Z Zeng, , , J Wang. . Multiple Mittag-Leffler stability of fractional-order recurrent neural networks. . IEEE Trans Syst Man Cybern Syst, , 2017. . 47((8):):2279--2288. . DOI:10.1109/TSMC.2017.2651059http://doi.org/10.1109/TSMC.2017.2651059..
P Liu, , , Z Zeng, , , J Wang. . Multistability of recurrent neural networks with nonmonotonic activation functions and unbounded time-varying delays. . IEEE Trans Neur Netw Learn Syst, , 2018. . 29((7):):3000--3010. . DOI:10.1109/TNNLS.2017.2710299http://doi.org/10.1109/TNNLS.2017.2710299..
Y Liu, , , D Zhang, , , J Lu. . Global exponential stability for quaternion-valued recurrent neural networks with time-varying delays. . Nonl Dynam, , 2017. . 87((1):):553--565. . DOI:10.1007/s11071-016-3060-2http://doi.org/10.1007/s11071-016-3060-2..
Y Liu, , , D Zhang, , , J Lou, , , 等. . Stability analysis of quaternion-valued neural networks: decomposition and direct approaches. . IEEE Trans Neur Netw Learn Syst, , 2018. . 29((9):):4201--4211. . DOI:10.1109/TNNLS.2017.2755697http://doi.org/10.1109/TNNLS.2017.2755697..
XB Nie, , , JL Liang, , , JD Cao. . Multistability analysis of competitive neural networks with Gaussian-wavelet-type activation functions and unbounded time-varying delays. . Appl Math Comput, , 2019. . 356449--468. . DOI:10.1016/j.amc.2019.03.026http://doi.org/10.1016/j.amc.2019.03.026..
DH Pang, , , W Jiang, , , S Liu, , , 等. . Stability analysis for a single degree of freedom fractional oscillator. . Phys A, , 2019. . 523498--506. . DOI:10.1016/j.physa.2019.02.016http://doi.org/10.1016/j.physa.2019.02.016..
I Podlubny. . Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. . Academic Press, San Diego, USA, , 1998. ..
CA Popa, , , E Kaslik. . Multistability and multiperiodicity in impulsive hybrid quaternion-valued neural networks with mixed delays. . Neur Netw, , 2018. . 991--18. . DOI:10.1016/j.neunet.2017.12.006http://doi.org/10.1016/j.neunet.2017.12.006..
XN Qi, , , HB Bao, , , JD Cao. . Exponential input-to-state stability of quaternion-valued neural networks with time delay. . Appl Math Comput, , 2019. . 358382--393. . DOI:10.1016/j.amc.2019.04.045http://doi.org/10.1016/j.amc.2019.04.045..
R Rakkiyappan, , , G Velmurugan, , , JD Cao. . Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with time delays. . Nonl Dynam, , 2014. . 78((4):):2823--2836. . DOI:10.1007/s11071-014-1628-2http://doi.org/10.1007/s11071-014-1628-2..
R Rakkiyappan, , , JD Cao, , , G Velmurugan. . Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays. . IEEE Trans Neur Netw Learn Syst, , 2015a. . 26((1):):84--97. . DOI:10.1109/TNNLS.2014.2311099http://doi.org/10.1109/TNNLS.2014.2311099..
R Rakkiyappan, , , G Velmurugan, , , J Cao. . Stability analysis of fractional-order complex-valued neural networks with time delays. . Chaos Sol Fract, , 2015b. . 78297--316. . DOI:10.1016/j.chaos.2015.08.003http://doi.org/10.1016/j.chaos.2015.08.003..
R Rakkiyappan, , , G Velmurugan, , , FA Rihan, , , 等. . Stability analysis of memristor-based complex-valued recurrent neural networks with time delays. . Complexity, , 2016. . 21((4):):14--39. . DOI:10.1002/cplx.21618http://doi.org/10.1002/cplx.21618..
J Schauder. . Der fixpunktsatz in funktionalramen. . Stud Math, , 1930. . 2171--180. . ..
QK Song, , , XF Chen. . Multistability analysis of quaternion-valued neural networks with time delays. . IEEE Trans Neur Netw Learn Syst, , 2018. . 29((1):):5430--5440. . DOI:10.1109/TNNLS.2018.2801297http://doi.org/10.1109/TNNLS.2018.2801297..
QK Song, , , H Yan, , , ZJ Zhao, , , 等. . Global exponential stability of complex-valued neural networks with both time-varying delays and impulsive effects. . Neur Netw, , 2016a. . 79108--116. . DOI:10.1016/j.neunet.2016.03.007http://doi.org/10.1016/j.neunet.2016.03.007..
QK Song, , , H Yan, , , ZJ Zhao, , , 等. . Global exponential stability of impulsive complex-valued neural networks with both asynchronous time-varying and continuously distributed delays. . Neur Netw, , 2016b. . 811--10. . DOI:10.1016/j.neunet.2016.04.012http://doi.org/10.1016/j.neunet.2016.04.012..
I Stamova. . Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays. . Nonl Dynam, , 2014. . 77((4):):1251--1260. . DOI:10.1007/s11071-014-1375-4http://doi.org/10.1007/s11071-014-1375-4..
S Tyagi, , , S Abbas, , , M Hafayed. . Global Mittag-Leffler stability of complex valued fractional-order neural network with discrete and distributed delays. . Rend Circol Matem PalermoSer 2, , 2016. . 65((3):):485--505. . DOI:10.1007/s12215-016-0248-8http://doi.org/10.1007/s12215-016-0248-8..
F Wang, , , YQ Yang, , , MF Hu. . Asymptotic stability of delayed fractional-order neural networks with impulsive effects. . Neurocomputing, , 2015. . 154239--244. . DOI:10.1016/j.neucom.2014.11.068http://doi.org/10.1016/j.neucom.2014.11.068..
H Wang, , , Y Yu, , , G Wen, , , 等. . Global stability analysis of fractional-order Hopfield neural networks with time delay. . Neurocomputing, , 2015. . 15415--23. . DOI:10.1016/j.neucom.2014.12.031http://doi.org/10.1016/j.neucom.2014.12.031..
JJ Wang, , , YF Jia. . Analysis on bifurcation and stability of a generalized Gray-Scott chemical reaction model. . Phys A, , 2019. . 528121394DOI:10.1016/j.physa.2019.121394http://doi.org/10.1016/j.physa.2019.121394..
LM Wang, , , QK Song, , , YR Liu, , , 等. . Global asymptotic stability of impulsive fractional-order complex-valued neural networks with time delay. . Neurocomputing, , 2017. . 24349--59. . DOI:10.1016/j.neucom.2017.02.086http://doi.org/10.1016/j.neucom.2017.02.086..
AL Wu, , , ZG Zeng. . Global Mittag-Leffler stabilization of fractional-order memristive neural networks. . IEEE Trans Neur Netw Learn Syst, , 2017. . 28((1):):206--217. . DOI:10.1109/TNNLS.2015.2506738http://doi.org/10.1109/TNNLS.2015.2506738..
XJ Yang, , , CD Li, , , QK Song, , , 等. . Global Mittag-Leffler stability and synchronization analysis of fractional-order quaternion-valued neural networks with linear threshold neurons. . Neur Netw, , 2018. . 10588--103. . DOI:10.1016/j.neunet.2018.04.015http://doi.org/10.1016/j.neunet.2018.04.015..
ZG Zeng, , , WX Zheng. . Multistability of neural networks with time-varying delays and concave-convex characteristics. . IEEE Trans Neur Netw Learn Syst, , 2012. . 23((2):):293--305. . DOI:10.1109/TNNLS.2011.2179311http://doi.org/10.1109/TNNLS.2011.2179311..
ZG Zeng, , , TW Huang, , , WX Zheng. . Multistability of recurrent neural networks with time-varying delays and the piecewise linear activation function. . IEEE Trans Neur Netw, , 2010. . 21((8):):1371--1377. . DOI:10.1109/TNN.2010.2054106http://doi.org/10.1109/TNN.2010.2054106..
FH Zhang, , , ZG Zeng. . Multistability and instability analysis of recurrent neural networks with time-varying delays. . Neur Netw, , 2018. . 97116--126. . DOI:10.1016/j.neunet.2017.09.013http://doi.org/10.1016/j.neunet.2017.09.013..
XX Zhang, , , PF Niu, , , YP Ma, , , 等. . Global Mittag-Leffler stability analysis of fractional-order impulsive neural networks with one-side Lipschitz condition. . Neur Netw, , 2017. . 9467--75. . DOI:10.1016/j.neunet.2017.06.010http://doi.org/10.1016/j.neunet.2017.06.010..
关联资源
相关文章
相关作者
相关机构