FOLLOWUS
Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK
[ "Kai-lai WU, 2018010115@bupt.edu.cn" ]
Yuan YAO, yaoy@bupt.edu.cn
[ "Xiao-he CHENG, xiaohec@bupt.edu.cn" ]
[ "Jun-sheng YU, jsyu@bupt.edu.cn" ]
[ "Tao YU, yutao@mobile.ee.titech.ac.jp" ]
[ "Xiao-dong CHEN, xiaodong.chen@qmul.ac.uk" ]
纸质出版日期:2020-01,
收稿日期:2019-09-02,
修回日期:2020-01-06,
Scan QR Code
邬开来, 姚远, 程潇鹤, 等. 适用于60 GHz应用的新型宽带高效毫米波天线阵列分析和设计[J]. 信息与电子工程前沿(英文), 2020,21(1):128-143.
KAI-LAI WU, YUAN YAO, XIAO-HE CHENG, et al. Analysis and design of novel wideband and high efficiency millimeter-wave antenna arrays for 60-GHz applications. [J]. Frontiers of information technology & electronic engineering, 2020, 21(1): 128-143.
邬开来, 姚远, 程潇鹤, 等. 适用于60 GHz应用的新型宽带高效毫米波天线阵列分析和设计[J]. 信息与电子工程前沿(英文), 2020,21(1):128-143. DOI: 10.1631/FITEE.1900461.
KAI-LAI WU, YUAN YAO, XIAO-HE CHENG, et al. Analysis and design of novel wideband and high efficiency millimeter-wave antenna arrays for 60-GHz applications. [J]. Frontiers of information technology & electronic engineering, 2020, 21(1): 128-143. DOI: 10.1631/FITEE.1900461.
提出一种适用于60 GHz应用且具有灵活设计的毫米波天线阵列。通过简单地改变天线阵列的辐射部分,可将天线阵列调整为线极化或圆极化。通过采用低插入损耗馈电网络和宽带天线单元,可实现高增益、宽带和高辐射效率特性。对于线性极化天线阵列,仿真结果表明,2×2天线子阵列的阻抗带宽达到21.6%,最大增益达到15.1 dBi,并且在工作带宽内波动小于0.4 dBi。对于8×8线极化天线阵列,仿真结果显示带宽为21.6%,增益为(26.1±1) dBi,天线效率超过80%。对于8×8圆极化天线阵列,仿真结果表明,阻抗带宽为18.2%,轴比(AR)带宽为13.3%。增益和效率分别达到27.6 dBi和80%。同时进行了天线阵列实物加工测试,并比较和分析结果。
A type of millimeter-wave antenna array with flexible design is proposed for a variety of applications at 60 GHz. The antenna array can be adjusted to be linearly or circularly polarized by simply changing the radiation part of the antenna array. High gain
wideband
and high radiation efficiency characteristics can be achieved by adopting a low insertion loss feeding network and broadband antenna elements. For the linearly polarized antenna array
simulation results show that the impedance bandwidth of the 2×2 antenna subarray reaches 21.6%
while the maximum gain achieves 15.1 dBi and has a fluctuation of less than 0.4 dBi within the working bandwidth. Simulation results of the 8×8 linearly polarized antenna array show a bandwidth of 21.6% and a gain of (26.1±1) dBi with an antenna efficiency of more than 80%. For the 8×8 circularly polarized antenna array
simulation results show that an impedance bandwidth of 18.2% and an axial ratio (AR) bandwidth of 13.3% are obtained. Gain and efficiency of up to 27.6 dBi and 80% are achieved
respectively. A prototype of antenna array is fabricated
and results are compared and analyzed.
60 GHz天线阵列线极化圆极化毫米波
60 GHzAntenna arrayLinearly polarizedCircularly polarizedMillimeter-wave
M Akbari, , , A Farahbakhsh, , , AR Sebak. . Ridge gap waveguide multilevel sequential feeding network for high-gain circularly polarized array antenna. . IEEE Trans Antenn Propag, , 2018. . 67((1):):251--259. . DOI:10.1109/TAP.2018.2878281http://doi.org/10.1109/TAP.2018.2878281..
M Du, , , YL Dong, , , J Xu, , , 等. . 35-GHz wideband circularly polarized patch array on LTCC. . IEEE Trans Antenn Propag, , 2017. . 65((6):):3235--3240. . DOI:10.1109/TAP.2017.2689073http://doi.org/10.1109/TAP.2017.2689073..
M Ferrando-Rocher, , , JI Herranz-Herruzo, , , A Valero-Nogueira, , , 等. . Single-layer circularly-polarized Ka-band antenna using gap waveguide technology. . IEEE Trans Antenn Propag, , 2018. . 66((8):):3837--3845. . DOI:10.1109/TAP.2018.2835639http://doi.org/10.1109/TAP.2018.2835639..
ZC Hao, , , BW Li. . Developing wideband planar millimeter-wave array antenna using compact magneto- electric dipoles. . IEEE Antenn Wirel Propag Lett, , 2017. . 162102--2105. . DOI:10.1109/LAWP.2017.2697903http://doi.org/10.1109/LAWP.2017.2697903..
H Irie, , , J Hirokawa. . Perpendicular-corporate feed in three-layered parallel-plate radiating-slot array. . IEEE Trans Antenn Propag, , 2017. . 65((11):):5829--5836. . DOI:10.1109/TAP.2017.2751659http://doi.org/10.1109/TAP.2017.2751659..
PS Kildal, , , E Alfonso, , , A Valero-Nogueira, , , 等. . Local metamaterial-based waveguides in gaps between parallel metal plates. . IEEE Antenn Wirel Propag Lett, , 2008. . 884--87. . DOI:10.1109/LAWP.2008.2011147http://doi.org/10.1109/LAWP.2008.2011147..
B Lee, , , Y Yoon. . Low-profile, low-cost, broadband millimeter-wave antenna array for high-data-rate WPAN systems. . IEEE Antenn Wirel Propag Lett, , 2017. . 161957--1960. . DOI:10.1109/LAWP.2017.2690440http://doi.org/10.1109/LAWP.2017.2690440..
YJ Li, , , KM Luk. . A 60-GHz wideband circularly polarized aperture-coupled magneto-electric dipole antenna array. . IEEE Trans Antenn Propag, , 2016. . 64((4):):1325--1333. . DOI:10.1109/TAP.2016.2537390http://doi.org/10.1109/TAP.2016.2537390..
JL Liu, , , A Vosoogh, , , AU Zaman, , , 等. . Design and fabrication of a high-gain 60-GHz cavity-backed slot antenna array fed by inverted microstrip gap waveguide. . IEEE Trans Antenn Propag, , 2017. . 65((4):):2117--2122. . DOI:10.1109/TAP.2017.2670509http://doi.org/10.1109/TAP.2017.2670509..
JL Liu, , , A Vosoogh, , , AU Zaman, , , 等. . A slot array antenna with single-layered corporate-feed based on ridge gap waveguide in the 60 GHz band. . IEEE Trans Antenn Propag, , 2018. . 67((3):):1650--1658. . DOI:10.1109/TAP.2018.2888730http://doi.org/10.1109/TAP.2018.2888730..
Y Miura, , , J Hirokawa, , , M Ando, , , 等. . Double-layer full-corporate-feed hollow-waveguide slot array antenna in the 60-GHz band. . IEEE Trans Antenn Propag, , 2011. . 59((8):):2844--2851. . DOI:10.1109/TAP.2011.2158784http://doi.org/10.1109/TAP.2011.2158784..
VV Parshin, , , MY Tretyakov, , , VN Shanin, , , 等. . Modern technique for absorption investigation in atmosphere and condensed media in the MM wavelength range. . 4th Int Kharkov Symp on Physics and Engineering of Millimeter and Sub-millimeter Waves, , 2001. . p.79--84. . DOI:10.1109/MSMW.2001.946750http://doi.org/10.1109/MSMW.2001.946750..
TS Rappaport, , , JN Murdock, , , F Gutierrez. . State of the art in 60-GHz integrated circuits and systems for wireless communications. . Proc IEEE, , 2011. . 99((8):):1390--1436. . DOI:10.1109/JPROC.2011.2143650http://doi.org/10.1109/JPROC.2011.2143650..
TS Rappaport, , , S Sun, , , R Mayzus, , , 等. . Millimeter wave mobile communications for 5G cellular: it will work!. . IEEE Access, , 2013. . 1335--349. . DOI:10.1109/ACCESS.2013.2260813http://doi.org/10.1109/ACCESS.2013.2260813..
T Tomura, , , Y Miura, , , M Zhang, , , 等. . A 45° linearly polarized hollow-waveguide corporate-feed slot array antenna in the 60-GHz band. . IEEE Trans Antenn Propag, , 2012. . 60((8):):3640--3646. . DOI:10.1109/TAP.2012.2201094http://doi.org/10.1109/TAP.2012.2201094..
T Yamamoto, , , M Zhang, , , J Hirokawa, , , 等. . Wideband design of a circularly-polarized plate-laminated waveguide slot array antenna. . Int Symp on Antennas and Propagation, , 2014. . p.13--14. . DOI:10.1109/ISANP.2014.7026486http://doi.org/10.1109/ISANP.2014.7026486..
AU Zaman, , , PS Kildal. . Gap waveguides. . In: Chen Z (Ed.), Handbook of Antenna Technologies. Springer, Singapore, , 2016. . p.3273--3347. . DOI:10.1007/978-981-4560-75-7_130-1http://doi.org/10.1007/978-981-4560-75-7_130-1..
D Zarifi, , , A Farahbakhsh, , , AU Zaman, , , 等. . Design and fabrication of a high-gain 60-GHz corrugated slot antenna array with ridge gap waveguide distribution layer. . IEEE Trans Antenn Propag, , 2016. . 64((7):):2905--2913. . DOI:10.1109/TAP.2016.2565682http://doi.org/10.1109/TAP.2016.2565682..
D Zarifi, , , A Farahbakhsh, , , AU Zaman. . A gap wave-guide-fed wideband patch antenna array for 60-GHz applications. . IEEE Trans Antenn Propag, , 2017. . 65((9):):4875--4879. . DOI:10.1109/TAP.2017.2722866http://doi.org/10.1109/TAP.2017.2722866..
JF Zhu, , , SF Li, , , SW Liao, , , 等. . High-gain series-fed planar aperture antenna array. . IEEE Antenn Wirel Propag Lett, , 2017. . 162750--2754. . DOI:10.1109/LAWP.2017.2744665http://doi.org/10.1109/LAWP.2017.2744665..
关联资源
相关文章
相关作者
相关机构