FOLLOWUS
Science and Technology on Antenna and Microwave Laboratory, Xidian University, Xi'an 710071, China
Department of Electronic and Digital Technologies, Polytech Nantes, University of Nantes, Nantes 44306, France
Ying LIU, E-mail: liuying@mail.xidian.edu.cn
纸质出版日期:2020-01,
收稿日期:2019-09-06,
修回日期:2020-01-18,
Scan QR Code
张晓曦, 任爱娣, 刘英. 5G应用下的MIMO阵列天线去耦方法综述[J]. 信息与电子工程前沿(英文), 2020,21(1):62-71.
XIAO-XI ZHANG, AI-DI REN, YING LIU. Decoupling methods of MIMO antenna arrays for 5G applications: a review. [J]. Frontiers of information technology & electronic engineering, 2020, 21(1): 62-71.
张晓曦, 任爱娣, 刘英. 5G应用下的MIMO阵列天线去耦方法综述[J]. 信息与电子工程前沿(英文), 2020,21(1):62-71. DOI: 10.1631/FITEE.1900466.
XIAO-XI ZHANG, AI-DI REN, YING LIU. Decoupling methods of MIMO antenna arrays for 5G applications: a review. [J]. Frontiers of information technology & electronic engineering, 2020, 21(1): 62-71. DOI: 10.1631/FITEE.1900466.
多输入多输出(MIMO)技术是未来通信的关键技术,它可以有效增加信道容量。对于未来的第五代(5G)终端,在紧凑的尺寸内实现理想隔离度仍具有挑战性。为取得可接受的隔离度,众多学者已开发许多去耦方法。本文回顾有关去耦方法的最新研究,包括增加去耦结构、使用正交模式和减小地板影响,并讨论5G智能手机中MIMO阵列天线的发展趋势。
Multiple-input multiple-output (MIMO) technique is a key technique for communication in the future. It can effectively enhance channel capacity. For future fifth-generation (5G) terminals
it is still a challenging task to realize desirable isolation within a compact size. To achieve an acceptable isolation level
many decoupling methods have been developed. We review the most recent research on decoupling methods
including the employment of external decoupling structures
orthogonal modes
and reduction of ground effect
and discuss the development trends of the MIMO array in 5G smartphones.
MIMO阵列5G手机去耦方法
MIMO array5G smartphoneDecoupling methods
A Al-Dulaimi, , , S Al-Rubaye, , , Q Ni, , , 等. . 5G communications race: pursuit of more capacity triggers LTE in unlicensed band. . IEEE Veh Technol Mag, , 2015. . 10((1):):43--51. . DOI:10.1109/MVT.2014.2380631http://doi.org/10.1109/MVT.2014.2380631..
AA Al-Hadi, , , J Ilvonen, , , R Valkonen, , , 等. . Eight- element antenna array for diversity and MIMO mobile terminal in LTE 3500 MHz band. . Microw Opt Technol Lett, , 2014. . 561323--1327. . DOI:10.1002/mop.28316http://doi.org/10.1002/mop.28316..
YL Ban, , , C Li, , , CYD Sim, , , 等. . 4G/5G multiple antennas for future multi-mode smartphone applications. . IEEE Access, , 2016. . 42981--2988. . DOI:10.1109/ACCESS.2016.2582786http://doi.org/10.1109/ACCESS.2016.2582786..
QG Chen, , , HW Lin, , , JP Wang, , , 等. . Single ring slot- based antennas for metal-rimmed 4G/5G smartphones. . IEEE Trans Antenn Propag, , 2019. . 67((3):):1476--1487. . DOI:10.1109/TAP.2018.2883686http://doi.org/10.1109/TAP.2018.2883686..
CJ Deng, , , D Liu, , , X Lv. . Tightly-arranged four-element MIMO antennas for 5G mobile terminals. . IEEE Trans Antenn Propag, , 2019. . 67((10):):6353--6361. . DOI:10.1109/TAP.2019.2922757http://doi.org/10.1109/TAP.2019.2922757..
JY Deng, , , J Yao, , , DQ Sun, , , 等. . Ten-element MIMO antenna for 5G terminals. . Microw Opt Technol Lett, , 2018. . 60((12):):3045--3049. . DOI:10.1002/mop.31404http://doi.org/10.1002/mop.31404..
A Diallo, , , C Luxey, , , P Le Thuc, , , 等. . Study and reduction of the mutual coupling between two mobile phone PIFAs operating in the DCS1800 and UMTS bands. . IEEE Trans Antenn Propag, , 2006. . 54((11):):3063--3074. . DOI:10.1109/TAP.2006.883981http://doi.org/10.1109/TAP.2006.883981..
A Ghalib, , , MS Sharawi. . TCM analysis of defected ground structures for MIMO antenna designs in mobile terminals. . IEEE Access, , 2017. . 519680--19692. . DOI:10.1109/ACCESS.2017.2739419http://doi.org/10.1109/ACCESS.2017.2739419..
J Guo, , , L Cui, , , C Li, , , 等. . Side-edge frame printed eight-port dual-band antenna array for 5G smartphone applications. . IEEE Trans Antenn Propag, , 2018. . 66((12):):7412--7417. . DOI:10.1109/TAP.2018.2872130http://doi.org/10.1109/TAP.2018.2872130..
WB Hong. . Solving the 5G mobile antenna puzzle: assessing future directions for the 5G mobile antenna paradigm shift. . IEEE Microw Mag, , 2017. . 18((7):):86--102. . DOI:10.1109/MMM.2017.2740538http://doi.org/10.1109/MMM.2017.2740538..
C Huang, , , YC Jiao, , , ZB Weng. . Novel compact CRLH- TL-based tri-band MIMO antenna element for the 5G mobile handsets. . Microw Opt Technol Lett, , 2018. . 60((10):):2559--2564. . DOI:10.1002/mop.31366http://doi.org/10.1002/mop.31366..
ITU. . World Radio Communication Conference Allocates Spectrum for Future Innovation, Conference Outcomes to Spur Long-term Investments in ICT Industry, , http://www.itu.int/net/pressoffice/press_releases/2015/56.aspxhttp://www.itu.int/net/pressoffice/press_releases/2015/56.aspx, , 2015. ..
W Jiang, , , B Liu, , , YQ Cui, , , 等. . High-isolation eight- element MIMO array for 5G smartphone applications. . IEEE Access, , 2019a. . 734104--34112. . DOI:10.1109/ACCESS.2019.2904647http://doi.org/10.1109/ACCESS.2019.2904647..
W Jiang, , , YQ Cui, , , B Liu, , , 等. . A dual-band MIMO antenna with enhanced isolation for 5G smartphone applications. . IEEE Access, , 2019b. . 7112554--112563. . DOI:10.1109/ACCESS.2019.2934892http://doi.org/10.1109/ACCESS.2019.2934892..
YN Jin, , , M Ko, , , YJ O, , , 等. . A planar UWB MIMO antenna with gain enhancement and isolation improvement for the 5G mobile platform. . Microw Opt Technol Lett, , 2019. . 61((4):):990--998. . DOI:10.1002/mop.31685http://doi.org/10.1002/mop.31685..
MY Li, , , YL Ban, , , ZQ Xu, , , 等. . Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications. . IEEE Trans Antenn Propag, , 2016. . 64((9):):3820--3830. . DOI:10.1109/TAP.2016.2583501http://doi.org/10.1109/TAP.2016.2583501..
MY Li, , , ZQ Xu, , , YL Ban, , , 等. . Eight-port orthogonally dual-polarized MIMO antennas using loop structures for 5G smartphone. . IET Microw Antennas Propag, , 2017. . 11((12):):1810--1816. . DOI:10.1049/iet-map.2017.0230http://doi.org/10.1049/iet-map.2017.0230..
MY Li, , , YL Ban, , , ZQ Xu, , , 等. . Tri-polarized 12-antenna MIMO array for future 5G smartphone applications. . IEEE Access, , 2018. . 66160--6170. . DOI:10.1109/ACCESS.2017.2781705http://doi.org/10.1109/ACCESS.2017.2781705..
YX Li, , , CYD Sim, , , Y Luo, , , 等. . 12-port 5G massive MIMO antenna array in sub-6 GHz mobile handset for LTE bands 42/43/46 applications. . IEEE Access, , 2018a. . 6344--354. . DOI:10.1109/ACCESS.2017.2763161http://doi.org/10.1109/ACCESS.2017.2763161..
YX Li, , , CYD Sim, , , Y Luo, , , 等. . Multiband 10-antenna array for sub-6 GHz MIMO applications in 5-G smartphone. . IEEE Access, , 2018b. . 628041--28053. . DOI:10.1109/ACCESS.2018.2838337http://doi.org/10.1109/ACCESS.2018.2838337..
YX Li, , , CYD Sim, , , Y Luo, , , 等. . High-isolation 3.5 GHz eight-antenna MIMO array using balanced open-slot antenna element for 5G smartphones. . IEEE Trans Antenn Propag, , 2019. . 67((6):):3820--3830. . DOI:10.1109/TAP.2019.2902751http://doi.org/10.1109/TAP.2019.2902751..
DQ Liu, , , M Zhang, , , HJ Luo, , , 等. . Dual-band platform- free PIFA for 5G MIMO application of mobile devices. . IEEE Trans Antenn Propag, , 2018. . 66((11):):6328--6333. . DOI:10.1109/TAP.2018.2863109http://doi.org/10.1109/TAP.2018.2863109..
DQ Liu, , , HJ Luo, , , M Zhang, , , 等. . An extremely low- profile wideband MIMO antenna for 5G smart-phones. . IEEE Trans Antenn Propag, , 2019. . 67((9):):5772--5780. . DOI:10.1109/TAP.2019.2908261http://doi.org/10.1109/TAP.2019.2908261..
Y Liu, , , AD Ren, , , H Liu, , , 等. . Eight-port MIMO array using characteristic mode theory for 5G smartphone applications. . IEEE Access, , 2019. . 745679--45692. . DOI:10.1109/ACCESS.2019.2909070http://doi.org/10.1109/ACCESS.2019.2909070..
JY Lu, , , HJ Chang, , , KL Wong. . 10-antenna array in the smartphone for the 3.6-GHz MIMO operation. . Proc IEEE Int Symp on Antennas and Propagation & USNC/URSI National Radio Science Meeting, , 2015. . p.1220--1221. . DOI:10.1109/APS.2015.7304999http://doi.org/10.1109/APS.2015.7304999..
JY Lu, , , KL Wong, , , WY Li. . Compact eight-antenna array in the smartphone for the 3.5-GHz LTE 8×8 MIMO operation. . Proc IEEE 5th Asia-Pacific Conf on Antennas and Propagation, , 2016. . p.323--324. . DOI:10.1109/APCAP.2016.7843224http://doi.org/10.1109/APCAP.2016.7843224..
NO Parchin, , , YIA Al-Yasir, , , AH Ali, , , 等. . Eight-element dual-polarized MIMO slot antenna system for 5G smartphone applications. . IEEE Access, , 2019. . 715612--15622. . DOI:10.1109/ACCESS.2019.2893112http://doi.org/10.1109/ACCESS.2019.2893112..
A Paulraj, , , R Nabar, , , D Gore. . Introduction to Space-Time Wireless Communications, , ::Cambridge, UKCambridge University Press, , 2003. ..
ZJ Qin, , , GY Wen, , , M Zhang, , , 等. . Printed eight-element MIMO system for compact and thin 5G mobile handset. . Electron Lett, , 2016. . 52((6):):416--418. . DOI:10.1049/el.2015.3960http://doi.org/10.1049/el.2015.3960..
LY Qu, , , H Lee, , , H Shin, , , 等. . MIMO antennas using controlled orthogonal characteristic modes by metal rims. . IET Microw Antenn Propag, , 2017. . 11((7):):1009--1015. . DOI:10.1049/iet-map.2016.0995http://doi.org/10.1049/iet-map.2016.0995..
AD Ren, , , Y Liu, , , CYD Sim. . A compact building block with two shared-aperture antennas for eight-antenna MIMO array in metal-rimmed smartphone. . IEEE Trans Antenn Propag, , 2019. . 67((10):):6430--6438. . DOI:10.1109/TAP.2019.2920306http://doi.org/10.1109/TAP.2019.2920306..
LB Sun, , , HG Feng, , , Y Li. . Tightly arranged orthogonal mode antenna for 5G MIMO mobile terminal. . Microw Opt Technol Lett, , 2018a. . 60((7):):1751--1756. . DOI:10.1002/mop.31240http://doi.org/10.1002/mop.31240..
LB Sun, , , HG Feng, , , Y Li, , , 等. . Compact 5G MIMO mobile phone antennas with tightly arranged orthogonal- mode pairs. . IEEE Trans Antenn Propag, , 2018b. . 66((11):):6364--6369. . DOI:10.1109/TAP.2018.2864674http://doi.org/10.1109/TAP.2018.2864674..
CY Tsai, , , KL Wong, , , WY Li. . Experimental results of the multi-GBPs smartphone with 20 multi-input multi-output (MIMO) antennas in the 20×12 MIMO operation. . Microw Opt Technol Lett, , 2018. . 60((8):):2001--2010. . DOI:10.1002/mop.31289http://doi.org/10.1002/mop.31289..
KL Wong, , , JY Lu, , , LY Chen, , , 等. . 6-antenna array in the smartphone for the 3.5-GHz MIMO operation. . Asia- Pacific Microwave Conf, , 2015. . p.1--3. . DOI:10.1109/APMC.2015.7411764http://doi.org/10.1109/APMC.2015.7411764..
KL Wong, , , JY Lu, , , LY Chen, , , 等. . 8-antenna and 16-antenna arrays using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smartphone. . Microw Opt Technol Lett, , 2016. . 58((1):):174--181. . DOI:10.1002/mop.29527http://doi.org/10.1002/mop.29527..
KL Wong, , , CY Tsai, , , JY Lu. . Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in the future smartphone. . IEEE Trans Antenn Propag, , 2017. . 65((4):):1765--1778. . DOI:10.1109/TAP.2017.2670534http://doi.org/10.1109/TAP.2017.2670534..
KL Wong, , , HJ Chang, , , WY Li. . Integrated triple- wideband triple-inverted-F antenna covering 617-960/ 1710-2690/3300-4200 MHz for 4G/5G communications in the smartphone. . Microw Opt Technol Lett, , 2018a. . 60((9):):2091--2096. . DOI:10.1002/mop.31314http://doi.org/10.1002/mop.31314..
KL Wong, , , YH Chen, , , WY Li. . Decoupled compact ultra-wideband MIMO antennas covering 3300- 6000 MHz for the fifth-generation mobile and 5 GHz WLAN operations in the future smartphone. . Microw Opt Technol Lett, , 2018b. . 60((10):):2345--2351. . DOI:10.1002/mop.31400http://doi.org/10.1002/mop.31400..
KL Wong, , , BW Lin, , , SE Lin. . High-isolation conjoined loop multi-input multi-output antennas for the fifth- generation tablet device. . Microw Opt Technol Lett, , 2019a. . 61((1):):111--119. . DOI:10.1002/mop.31505http://doi.org/10.1002/mop.31505..
KL Wong, , , YH Chen, , , WY Li. . Conjoined ultra- wideband (2300-6000 MHz) dual antennas for LTE HB/WiFi/5G multi-input multi-output operation in the fifth-generation tablet device. . Microw Opt Technol Lett, , 2019b. . 61((8):):1958--1963. . DOI:10.1002/mop.31822http://doi.org/10.1002/mop.31822..
H Xu, , , H Zhou, , , S Gao, , , 等. . Multimode decoupling technique with independent tuning characteristic for mobile terminals. . IEEE Trans Antenn Propag, , 2017. . 65((12):):6739--6751. . DOI:10.1109/TAP.2017.2754445http://doi.org/10.1109/TAP.2017.2754445..
XG Zhang, , , YX Li, , , W Wang, , , 等. . Ultra-wideband 8-port MIMO antenna array for 5G metal-frame smartphones. . IEEE Access, , 2019. . 772273--72282. . DOI:10.1109/ACCESS.2019.2919622http://doi.org/10.1109/ACCESS.2019.2919622..
AP Zhao, , , ZY Ren. . Multiple-input and multiple-output antenna system with self-isolated antenna element for fifth-generation mobile terminals. . Microw Opt Technol Lett, , 2019a. . 61((1):):20--27. . DOI:10.1002/mop.31515http://doi.org/10.1002/mop.31515..
AP Zhao, , , ZY Ren. . Size reduction of self-isolated MIMO antenna system for 5G mobile phone applications. . IEEE Antenn Wirel Propag Lett, , 2019b. . 18((1):):152--156. . DOI:10.1109/LAWP.2018.2883428http://doi.org/10.1109/LAWP.2018.2883428..
X Zhao, , , SP Yeo, , , LC Ong. . Decoupling of inverted-F antennas with high-order modes of ground plane for 5G mobile MIMO platform. . IEEE Trans Antenn Propag, , 2018. . 66((9):):4485--4495. . DOI:10.1109/TAP.2018.2851381http://doi.org/10.1109/TAP.2018.2851381..
关联资源
相关文章
相关作者
相关机构