FOLLOWUS
Wireless Technology Laboratory, Huawei Technologies Co., Ltd., Hangzhou 310051, China
Wireless Technology Laboratory, Huawei Technologies Co., Ltd., Ottawa K0A3M0, Canada
[ "Jun WANG, E-mail: justin.wangjun@huawei.com" ]
Rong LI, E-mail: lirongone.li@huawei.com
[ "Jian WANG, E-mail: wangjian23@huawei.com" ]
[ "Yi-qun GE, E-mail: yiqun.ge@huawei.com" ]
[ "Qi-fan ZHANG, E-mail: qifan.zhang@huawei.com" ]
[ "Wu-xian SHI, E-mail: wuxian.shi@huawei.com" ]
纸质出版日期:2020-10,
网络出版日期:2020-06-22,
收稿日期:2019-09-27,
修回日期:2020-05-18,
Scan QR Code
王俊, 李榕, 王坚, 等. 人工智能与无线通信[J]. 信息与电子工程前沿(英文), 2020,21(10):1413-1425.
JUN WANG, RONG LI, JIAN WANG, et al. Artificial intelligence and wireless communications. [J]. Frontiers of information technology & electronic engineering, 2020, 21(10): 1413-1425.
王俊, 李榕, 王坚, 等. 人工智能与无线通信[J]. 信息与电子工程前沿(英文), 2020,21(10):1413-1425. DOI: 10.1631/FITEE.1900527.
JUN WANG, RONG LI, JIAN WANG, et al. Artificial intelligence and wireless communications. [J]. Frontiers of information technology & electronic engineering, 2020, 21(10): 1413-1425. DOI: 10.1631/FITEE.1900527.
近来,人工智能和机器学习技术在无线通信领域的应用受到极大关注。人工智能在语音理解、图像识别、自然语言处理等领域取得成功,展示了其解决难以建模问题的巨大潜力。无线通信在大量应用场景中存在着日益增长且多样的需求,而人工智能已成为满足这些需求的重要使能技术。本文详细介绍无线通信中人工智能发挥重要作用的一些典型场景,包括信道建模、信道译码和信号检测以及信道编码设计。进而,从信息瓶颈的角度讨论了人工智能和信息论的关系。最后,讨论了将人工智能技术深入集成在无线通信系统的一些想法。
The applications of artificial intelligence (AI) and machine learning (ML) technologies in wireless communications have drawn significant attention recently. AI has demonstrated real success in speech understanding
image identification
and natural language processing domains
thus exhibiting its great potential in solving problems that cannot be easily modeled. AI techniques have become an enabler in wireless communications to fulfill the increasing and diverse requirements across a large range of application scenarios. In this paper
we elaborate on several typical wireless scenarios
such as channel modeling
channel decoding and signal detection
and channel coding design
in which AI plays an important role in wireless communications. Then
AI and information theory are discussed from the viewpoint of the information bottleneck. Finally
we discuss some ideas about how AI techniques can be deeply integrated with wireless communication systems.
无线通信人工智能机器学习
Wireless communicationsArtificial intelligenceMachine learning
A Achille, , , S Soatto. . Information dropout: learning optimal representations through noisy computation. . IEEE Trans Patt Anal Mach Intell, , 2018. . 40((12):):2897--2905. . DOI:10.1109/TPAMI.2017.2784440http://doi.org/10.1109/TPAMI.2017.2784440..
AA Alemi, , , I Fischer, , , JV Dillon, , , 等. . https://arxiv.org/abs/1612.00410https://arxiv.org/abs/1612.00410, , Deep variational information bottleneck, , 2016. ..
RA Amjad, , , BC Geiger. . Learning representations for neural network-based classification using the information bottleneck principle. . in press, , 2019. . DOI:10.1109/TPAMI.2019.2909031http://doi.org/10.1109/TPAMI.2019.2909031..
E Arikan. . Systematic polar coding. . IEEE Commun Lett, , 2011. . 15((8):):860--862. . DOI:10.1109/LCOMM.2011.061611.110862http://doi.org/10.1109/LCOMM.2011.061611.110862..
M Arnold, , , S Drner, , , S Cammerer, , , 等. . https://arxiv.org/abs/1901.03664v1https://arxiv.org/abs/1901.03664v1, , Enabling FDD massive MIMO through deep learning-based channel prediction, , 2019. ..
D Barber. . Bayesian Reasoning and Machine Learning, , ::Cambridge, UKCambridge University Press, , 2012. ..
X Chen, , , Y Duan, , , R Houthooft, , , 等. . InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. . Proc 30th Int Conf on Neural Information Processing Systems, , 2016. . p.2180--2188. . ..
A Decurninge, , , LG Ordez, , , P Ferrand, , , 等. . CSI-based outdoor localization for massive MIMO: experiments with a learning approach. . Proc 15th Int Symp on Wireless Communication Systems, , 2018. . p.1--6. . DOI:10.1109/ISWCS.2018.8491210http://doi.org/10.1109/ISWCS.2018.8491210..
TB Ding, , , A Hirose. . Fading channel prediction based on combination of complex-valued neural networks and chirp Z-transform. . IEEE Trans Neur Netw Learn Syst, , 2014. . 25((9):):1686--1695. . DOI:10.1109/TNNLS.2014.2306420http://doi.org/10.1109/TNNLS.2014.2306420..
I Estella-Aguerri, , , A Zaidi. . Distributed variational representation learning. . IEEE Trans Patt Anal Mach Intell, in press, , 2019. . DOI:10.1109/TPAMI.2019.2928806http://doi.org/10.1109/TPAMI.2019.2928806..
N Farsad, , , A Goldsmith. . https://arxiv.org/abs/1705.08044https://arxiv.org/abs/1705.08044, , Detection algorithms for communication systems using deep learning, , 2017. ..
J Grau-Moya, , , F Leibfried, , , P Vrancx. . Soft Q-learning with mutual-information regularization. . 7th Int Conf on Learning Representations, , 2018. . p.1--19. . ..
T Gruber, , , S Cammerer, , , J Hoydis, , , 等. . On deep learning-based channel decoding. . 51st Annual Conf on Information Sciences and Systems, , 2017. . p.1--6. . DOI:10.1109/CISS.2017.7926071http://doi.org/10.1109/CISS.2017.7926071..
LC Huang, , , HZ Zhang, , , R Li, , , 等. . AI coding: learning to construct error correction codes. . IEEE Trans Commun, , 2019. . 68((1):):26--39. . DOI:10.1109/TCOMM.2019.2951403http://doi.org/10.1109/TCOMM.2019.2951403..
YR Huangfu, , , J Wang, , , R Li, , , 等. . Predicting the mumble of wireless channel with sequence-to-sequence models. . Proc 30th Annual Int Symp on Personal, Indoor and Mobile Radio Communications, , 2019a. . p.1--7. . DOI:10.1109/PIMRC.2019.8904286http://doi.org/10.1109/PIMRC.2019.8904286..
YR Huangfu, , , J Wang, , , C Xu, , , 等. . https://arxiv.org/abs/1907.09117https://arxiv.org/abs/1907.09117, , Realistic channel models pre-training, , 2019b. ..
S Hur, , , S Baek, , , B Kim, , , 等. . Proposal on millimeter-wave channel modeling for 5G cellular system. . IEEE J Sel Top Signal Process, , 2016. . 10((3):):454--469. . DOI:10.1109/JSTSP.2016.2527364http://doi.org/10.1109/JSTSP.2016.2527364..
RK Jain, , , DMW Chiu, , , WR Hawe. . A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Computer System. . Technical Report No. DEC-TR-301, Eastern Research Laboratory, Digital Equipment Corporation, Hudson, MA, USA, , 1984. ..
F Kelly. . Charging and rate control for elastic traffic. . Eur Trans Telecommun, , 1997. . 8((1):):33--37. . DOI:10.1002/ett.4460080106http://doi.org/10.1002/ett.4460080106..
JP Kermoal, , , L Schumacher, , , KI Pedersen, , , 等. . A stochastic MIMO radio channel model with experimental validation. . IEEE J Sel Areas Commun, , 2002. . 20((6):):1211--1226. . DOI:10.1109/JSAC.2002.801223http://doi.org/10.1109/JSAC.2002.801223..
H Kim, , , YH Jiang, , , R Rana, , , 等. . https://arxiv.org/abs/1805.09317https://arxiv.org/abs/1805.09317, , Communication algorithms via deep learning, , 2018. ..
J Konen, , , HB McMahan, , , FX Yu, , , 等. . https://arxiv.org/abs/1610.05492https://arxiv.org/abs/1610.05492, , Federated learning: strategies for improving communication efficiency, , 2016. ..
B Li, , , H Shen, , , D Tse. . https://arxiv.org/abs/1407.5483https://arxiv.org/abs/1407.5483, , A RM-polar codes, , 2014. ..
YX Li. . https://arxiv.org/abs/1701.07274https://arxiv.org/abs/1701.07274, , Deep reinforcement learning: an overview, , 2017. ..
CQ Luo, , , JL Ji, , , QL Wang, , , 等. . Channel state information prediction for 5G wireless communications: a deep learning approach. . IEEE Trans Netw Sci Eng, , 2020. . 7((1):):227--236. . DOI:10.1109/TNSE.2018.2848960http://doi.org/10.1109/TNSE.2018.2848960..
NC Luong, , , DT Hoang, , , SM Gong, , , 等. . Applications of deep reinforcement learning in communications and networking: a survey. . IEEE Commun Surv Tutor, , 2019. . 21((4):):3133--3174. . DOI:10.1109/COMST.2019.2916583http://doi.org/10.1109/COMST.2019.2916583..
Q Mao, , , F Hu, , , Q Hao. . Deep learning for intelligent wireless networks: a comprehensive survey. . IEEE Commun Surv Tutor, , 2018. . 20((4):):2595--2621. . DOI:10.1109/COMST.2018.2846401http://doi.org/10.1109/COMST.2018.2846401..
B Mittelstadt, , , C Russell, , , S Wachter. . Explaining explanations in AI. . Proc Conf on Fairness, Accountability, and Transparency, , 2019. . p.279--288. . DOI:10.1145/3287560.3287574http://doi.org/10.1145/3287560.3287574..
E Nachmani, , , Y Be'ery, , , D Burshtein. . Learning to decode linear codes using deep learning. . 54th Annual Allerton Conf on Communication, Control, and Computing, , 2016. . p.341--346. . DOI:10.1109/ALLERTON.2016.7852251http://doi.org/10.1109/ALLERTON.2016.7852251..
E Nachmani, , , E Marciano, , , L Lugosch, , , 等. . Deep learning methods for improved decoding of linear codes. . IEEE J Sel Top Signal Process, , 2018. . 12((1):):119--131. . DOI:10.1109/JSTSP.2017.2788405http://doi.org/10.1109/JSTSP.2017.2788405..
T O'Shea, , , J Hoydis. . An introduction to deep learning for the physical layer. . IEEE Trans Cogn Commun Netw, , 2017. . 3((4):):563--575. . DOI:10.1109/TCCN.2017.2758370http://doi.org/10.1109/TCCN.2017.2758370..
J Patterson, , , A Gibson. . Deep Learning: a Practitioner's Approach. . O'Reilly Media, Inc., Sebastopol, USA, , 2017. ..
MH Qin, , , J Guo, , , A Bhatia, , , 等. . Polar code constructions based on LLR evolution. . IEEE Commun Lett, , 2017. . 21((6):):1221--1224. . DOI:10.1109/LCOMM.2017.2656126http://doi.org/10.1109/LCOMM.2017.2656126..
S Russell, , , P Norvig. . Artificial Intelligence: a Modern Approach, , ::Upper Saddle River, NJ, USAPrentice Hall, , 2002. ..
CE Shannon, , , W Weaver. . The Mathematical Theory of Communication, , ::Urbana, USAUniversity of Illinois Press, , 1949. ..
R Shwartz-Ziv, , , N Tishby. . https://arxiv.org/abs/1703.00810https://arxiv.org/abs/1703.00810, , Opening the black box of deep neural networks via information, , 2017. ..
G Stampa, , , M Arias, , , D Snchez-Charles, , , 等. . https://arxiv.org/abs/1709.07080https://arxiv.org/abs/1709.07080, , A deep-reinforcement learning approach for software-defined networking routing optimization, , 2017. ..
M Sternad, , , D Aronsson. . Channel estimation and prediction for adaptive OFDM downlinks [vehicular applications].. . Proc 58th Vehicular Technology Conf, , 2003. . p.1283--1287. . DOI:10.1109/VETECF.2003.1285229http://doi.org/10.1109/VETECF.2003.1285229..
I Sutskever, , , O Vinyals, , , QV Le. . Sequence to sequence learning with neural networks. . Proc 27th Int Conf on Neural Information Processing Systems, , 2014. . p.3104--3112. . ..
N Tishby, , , FC Pereira, , , W Bialek. . https://arxiv.org/abs/physics/0004057https://arxiv.org/abs/physics/0004057, , The information bottleneck method, , 2000. ..
P Trifonov, , , V Miloslavskaya. . Polar subcodes. . IEEE J Sel Areas Commun, , 2015. . 34((2):):254--266. . DOI:10.1109/JSAC.2015.2504269http://doi.org/10.1109/JSAC.2015.2504269..
D Tse. . Multiuser Diversity in Wireless Networks. . Wireless Communications Seminar, Standford University, Stanford, CA, USA, , 2001. ..
A Vaswani, , , N Shazeer, , , N Parmar, , , 等. . Attention is all you need. . Proc 31st Int Conf on Neural Information Processing Systems, , 2017. . p.6000--6010. . ..
J Wang, , , C Xu, , , YR Huangfu, , , 等. . Deep reinforcement learning for scheduling in cellular networks. . Proc 11th Int Conf on Wireless Communications and Signal Processing, , 2019. . p.1--6. . DOI:10.1109/WCSP.2019.8927868http://doi.org/10.1109/WCSP.2019.8927868..
T Wang, , , DM Qu, , , T Jiang. . Parity-check-concatenated polar codes. . IEEE Commun Lett, , 2016. . 20((12):):2342--2345. . DOI:10.1109/LCOMM.2016.2607169http://doi.org/10.1109/LCOMM.2016.2607169..
CK Wen, , , WT Shih, , , S Jin. . Deep learning for massive MIMO CSI feedback. . IEEE Wirel Commun Lett, , 2018. . 7((5):):748--751. . DOI:10.1109/LWC.2018.2818160http://doi.org/10.1109/LWC.2018.2818160..
C Xu, , , J Wang, , , TH Yu, , , 等. . https://arxiv.org/abs/1911.05281https://arxiv.org/abs/1911.05281, , Buffer-aware wireless scheduling based on deep reinforcement learning, , 2019. ..
ZY Xu, , , YZ Wang, , , J Tang, , , 等. . A deep reinforcement learning based framework for power-efficient resource allocation in cloud RANs. . IEEE Int Conf on Communications, , 2017. . p.1--6. . DOI:10.1109/ICC.2017.7997286http://doi.org/10.1109/ICC.2017.7997286..
A Zappone, , , M di Renzo, , , M Debbah. . Wireless networks design in the era of deep learning: model-based, AI-based, or both?. . IEEE Trans Commun, , 2019. . 67((10):):7331--7376. . DOI:10.1109/TCOMM.2019.2924010http://doi.org/10.1109/TCOMM.2019.2924010..
CY Zhang, , , P Patras, , , H Haddadi. . Deep learning in mobile and wireless networking: a survey. . IEEE Commun Surv Tutor, , 2019. . 21((3):):2224--2287. . DOI:10.1109/COMST.2019.2904897http://doi.org/10.1109/COMST.2019.2904897..
HZ Zhang, , , R Li, , , J Wang, , , 等. . Parity-check polar coding for 5G and beyond. . IEEE Int Conf on Communications, , 2018. . p.1--7. . DOI:10.1109/ICC.2018.8422462http://doi.org/10.1109/ICC.2018.8422462..
QS Zhang, , , SC Zhu. . Visual interpretability for deep learning: a survey. . Front Inform Technol Electron Eng, , 2018. . 19((1):):27--39. . DOI:10.1631/FITEE.1700808http://doi.org/10.1631/FITEE.1700808..
SJ Zhao, , , JM Song, , , S Ermon. . https://arxiv.org/abs/1806.06514https://arxiv.org/abs/1806.06514, , The information autoencoding family: a Lagrangian perspective on latent variable generative models, , 2018. ..
关联资源
相关文章
相关作者
相关机构