FOLLOWUS
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
Zhejiang Lab, Hangzhou 311121, China
Institute of Wanfeng Jinyuan Holding Group Co., Ltd., Shaoxing 312000, China
[ "Yan SHAO, E-mail: shaoy@zju.edu.cn" ]
Zhi-feng ZHAO, E-mail:zhaozf@zhejianglab.com
[ "Rong-peng LI, E-mail: lirongpeng@zju.edu.cn" ]
[ "Yu-geng ZHOU, E-mail: yugeng.zhou@wfjyjt.com" ]
纸质出版日期:2020-05,
收稿日期:2019-11-30,
修回日期:2020-03-31,
Scan QR Code
邵燕, 赵志峰, 李荣鹏, 等. 基于数字信息素和领航算法的未知环境多智能体目标探测[J]. 信息与电子工程前沿(英文), 2020,21(5):796-808.
SHAO YAN, ZHAO ZHI-FENG, LI RONG-PENG, et al. Target detection for multi-UAVs via digital pheromones and navigation algorithm in unknown environments. [J]. Frontiers of information technology & electronic engineering, 2020, 21(5): 796-808.
邵燕, 赵志峰, 李荣鹏, 等. 基于数字信息素和领航算法的未知环境多智能体目标探测[J]. 信息与电子工程前沿(英文), 2020,21(5):796-808. DOI: 10.1631/FITEE.1900659.
SHAO YAN, ZHAO ZHI-FENG, LI RONG-PENG, et al. Target detection for multi-UAVs via digital pheromones and navigation algorithm in unknown environments. [J]. Frontiers of information technology & electronic engineering, 2020, 21(5): 796-808. DOI: 10.1631/FITEE.1900659.
在复杂且动态性强的环境中,指导多无人机系统协调运作是一项具有挑战性的技术。基于数字信息素和当前主流无人系统控制算法,提出一种有限先验知识下多无人机系统目标探测分布式算法。通过改进不同语义数字信息素的融合算法和个体行为决策方案,提出一种更合理、有效的信息素更新机制。同时,考虑到一些个体在感知和交流方面的局限性,以及受自然界蜂拥算法启发,在Olfati-Saber无人机群控制算法基础上,设计了新的领航算法模型。此外,使用矢量信息代替传统标量信息素,使无人机群具有更高探测效率。仿真结果表明,该算法在指定区域的探测覆盖率、目标获取及回访效率、避障能力等方面都有较好表现。
Coordinating multiple unmanned aerial vehicles (multi-UAVs) is a challenging technique in highly dynamic and sophisticated environments. Based on digital pheromones as well as current mainstream unmanned system controlling algorithms
we propose a strategy for multi-UAVs to acquire targets with limited prior knowledge. In particular
we put forward a more reasonable and effective pheromone update mechanism
by improving digital pheromone fusion algorithms for different semantic pheromones and planning individuals' probabilistic behavioral decision-making schemes. Also
inspired by the flocking model in nature
considering the limitations of some individuals in perception and communication
we design a navigation algorithm model on top of Olfati-Saber's algorithm for flocking control
by further replacing the pheromone scalar to a vector. Simulation results show that the proposed algorithm can yield superior performance in terms of coverage
detection and revisit efficiency
and the capability of obstacle avoidance.
群体智能数字信息素人工势场领航算法
Collective intelligenceDigital pheromonesArtificial potential fieldNavigation algorithm
AL Alfeo, , , MGCA Cimino, , , N de Francesco, , , 等. . Design and simulation of the emergent behavior of small drones swarming for distributed target localization. . J Comput Sci, , 2018a. . 2919--33. . DOI:10.1016/j.jocs.2018.09.014http://doi.org/10.1016/j.jocs.2018.09.014..
AL Alfeo, , , MGCA Cimino, , , S Egidi, , , 等. . A stigmergy-based analysis of city hotspots to discover trends and anomalies in urban transportation usage. . IEEE Trans Intell Transp Syst, , 2018b. . 19((7):):2258--2267. . DOI:10.1109/TITS.2018.2817558http://doi.org/10.1109/TITS.2018.2817558..
AL Alfeo, , , MGCA Cimino, , , N de Francesco, , , 等. . Swarm coordination of mini-UAVs for target search using imperfect sensors. . Intell Dec Technol, , 2018c. . 12((2):):149--162. . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=661e213e9f363a27fc65a04830e7ff82http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=661e213e9f363a27fc65a04830e7ff82, , ..
Y Ando, , , Y Fukazawa, , , O Masutani, , , 等. . Performance of pheromone model for predicting traffic congestion. . Proc 5th Int Joint Conf on Autonomous Agents and Multiagent Systems, , 2006. . p.73--80. . DOI:10.1145/1160633.1160642http://doi.org/10.1145/1160633.1160642..
MGCA Cimino, , , M Lega, , , M Monaco, , , 等. . Adaptive exploration of a UAVs swarm for distributed targets detection and tracking. . Proc 8th Int Conf on Pattern Recognition Applications and Methods, , 2019. . p.1--8. . ..
AN Dai, , , ZF Zhao, , , RP Li, , , 等. . Evaluation mechanism of collective intelligence for heterogeneous agents group. . IEEE Access, , 2020. . 828385--28394. . DOI:10.1109/ACCESS.2020.2971278http://doi.org/10.1109/ACCESS.2020.2971278..
M Dorigo, , , G di Caro, , , LM Gambardella. . Ant algorithms for discrete optimization. . Artif Life, , 1999. . 5((2):):137--172. . DOI:10.1162/106454699568728http://doi.org/10.1162/106454699568728..
R Eberhart, , , J Kennedy. . A new optimizer using particle swarm theory. . Proc 6th Int Symp on Micro Machine and Human Science, , 1995. . p.39--43. . DOI:10.1109/MHS.1995.494215http://doi.org/10.1109/MHS.1995.494215..
D Karaboga. . An Idea Based on Honey Bee Swarm for Numerical Optimization, , ::TurkeyTechnical Report-tr06, Erciyes University, , 2005. ..
J Kennedy, , , R Eberhart. . Particle swarm optimization. . Proc Int Conf on Neural Networks, , 1995. . p.1942--1948. . http://d.old.wanfangdata.com.cn/Periodical/hwyhmb201001014http://d.old.wanfangdata.com.cn/Periodical/hwyhmb201001014, , ..
T Kuyucu, , , I Tanev, , , K Shimohara. . Superadditive effect of multi-robot coordination in the exploration of unknown environments via stigmergy. . Neurocomputing, , 2015. . 14883--90. . DOI:10.1016/j.neucom.2012.07.062http://doi.org/10.1016/j.neucom.2012.07.062..
Z Liu, , , XG Gao, , , XW Fu. . A cooperative search and coverage algorithm with controllable revisit and connectivity maintenance for multiple unmanned aerial vehicles. . Sensors, , 2018. . 18((5):):1472DOI:10.3390/s18051472http://doi.org/10.3390/s18051472..
B Micieta, , , M Edl, , , M Krajcovic, , , 等. . Delegate mass for coordination and control of one-directional AGV systems: a proof-of-concept. . Int J Adv Manuf Technol, , 2018. . 94((1-4):):415--431. . DOI:10.1007/s00170-017-0915-8http://doi.org/10.1007/s00170-017-0915-8..
R Olfati-Saber. . Flocking for multi-agent dynamic systems algorithms and theory. . IEEE Trans Autom Contr, , 2006. . 51((3):):401--420. . DOI:10.1109/TAC.2005.864190http://doi.org/10.1109/TAC.2005.864190..
CW Reynolds. . Flocks, herds, and schools: a distributed behavioral model. . ACM SIGGRAPH Comput Graph, , 1987. . 21((4):):25--34. . DOI:10.1145/37402.37406http://doi.org/10.1145/37402.37406..
JA Sauter, , , R Matthews, , , H van Dyke Parunak, , , 等. . Performance of digital pheromones for swarming vehicle control. . Proc 4th Int Joint Conf on Autonomous Agents and Multiagent Systems, , 2005. . p.903--910. . DOI:10.1145/1082473.1082610http://doi.org/10.1145/1082473.1082610..
M Senanayake, , , I Senthooran, , , JC Barca, , , 等. . Search and tracking algorithms for swarms of robots: a survey. . Robot Auton Syst, , 2016. . 75422--434. . DOI:10.1016/j.robot.2015.08.010http://doi.org/10.1016/j.robot.2015.08.010..
JM Soares, , , I Navarro, , , A Martinoli. . The Khepera Ⅳ mobile robot: performance evaluation, sensory data and software toolbox. . Proc 2nd Iberian Robotics Conf, , 2015. . p.767--781. . DOI:10.1007/978-3-319-27146-0_59http://doi.org/10.1007/978-3-319-27146-0_59..
E Soria, , , F Schiano, , , D Floreano. . The influence of limited visual sensing on the Reynolds flocking algorithm. . Proc 3rd Int Conf on Robotic Computing, , 2019. . p.138--145. . DOI:10.1109/IRC.2019.00028http://doi.org/10.1109/IRC.2019.00028..
HS Su, , , XF Wang, , , ZL Lin. . Flocking of multi-agents with a virtual leader. . IEEE Trans Autom Contr, , 2009. . 54((2):):293--307. . DOI:10.1109/TAC.2008.2010897http://doi.org/10.1109/TAC.2008.2010897..
QR Tang, , , ZP Xu, , , FC Yu, , , 等. . Dynamic target searching and tracking with swarm robots based on stigmergy mechanism. . Robot Auton Syst, , 2019. . 120103251DOI:10.1016/j.robot.2019.103251http://doi.org/10.1016/j.robot.2019.103251..
H van Dyke Parunak, , , S Brueckner, , , J Sauter. . Digital pheromone mechanisms for coordination of unmanned vehicles. . Proc 1st Int Joint Conf on Autonomous Agents and Multiagent Systems, , 2002. . p.449--450. . DOI:10.1145/544741.544843http://doi.org/10.1145/544741.544843..
G Vásárhelyi, , , C Virágh, , , G Somorjai, , , 等. . Optimized flocking of autonomous drones in confined environments. . Sci Rob, , 2018. . 3((20):):eaat3536DOI:10.1126/scirobotics.aat3536http://doi.org/10.1126/scirobotics.aat3536..
F Yang, , , XL Ji, , , CW Yang, , , 等. . Cooperative search of UAV swarm based on improved ant colony algorithm in uncertain environment. . Proc IEEE Int Conf on Unmanned Systems, , 2017. . p.231--236. . DOI:10.1109/ICUS.2017.8278346http://doi.org/10.1109/ICUS.2017.8278346..
关联资源
相关文章
相关作者
相关机构