FOLLOWUS
Department of Psychology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
Hikvision Research Institute, Hangzhou 310052, China
[ "Yanyi ZHANG, E-mail: doczyy1981@sina.com" ]
[ "Ming KONG, E-mail: zjukongming@zju.edu.cn" ]
Qiang ZHU, E-mail: zhuq@zju.edu.cn
纸质出版日期:2021-03,
收稿日期:2019-12-25,
修回日期:2020-11-13,
Scan QR Code
张雁翼, 孔鸣, 赵天琦, 等. 基于人工智能技术的儿童ADHD辅助诊断系统[J]. 信息与电子工程前沿(英文), 2021,22(3):400-414.
YANYI ZHANG, MING KONG, TIANQI ZHAO, et al. Auxiliary diagnostic system for ADHD in children based on AI technology. [J]. Frontiers of information technology & electronic engineering, 2021, 22(3): 400-414.
张雁翼, 孔鸣, 赵天琦, 等. 基于人工智能技术的儿童ADHD辅助诊断系统[J]. 信息与电子工程前沿(英文), 2021,22(3):400-414. DOI: 10.1631/FITEE.1900729.
YANYI ZHANG, MING KONG, TIANQI ZHAO, et al. Auxiliary diagnostic system for ADHD in children based on AI technology. [J]. Frontiers of information technology & electronic engineering, 2021, 22(3): 400-414. DOI: 10.1631/FITEE.1900729.
传统的儿童注意缺陷多动障碍(ADHD)诊断主要基于由父母/老师填写的调查问卷和医生的临床观察,不仅效率不高,而且诊断准确率很大程度上取决于医生的经验水平。本文将人工智能技术结合到一种软硬件协同辅助诊断系统中,以使ADHD诊断更为高效。通过集成智能分析模块,相机模组将采集受试儿童完成执行功能测试时的眼部注意力、面部表情、3D身体姿态和其他测试信息。然后,提出一种多模态深度学习模型,用于对所采集视频中儿童的异常行为片段进行分类。结合其他系统模块所采集的信息,辅助诊断系统能够自动生成标准化的诊断报告,包括测试结果、异常行为分析、辅助诊断结论和治疗建议。该系统目前实际部署在浙江大学医学院附属儿童医院心理科,用于临床辅助诊断,得到医生和患者一致好评。
Traditional diagnosis of attention deficit hyperactivity disorder (ADHD) in children is primarily through a questionnaire filled out by parents/teachers and clinical observations by doctors. It is inefficient and heavily depends on the doctor's level of experience. In this paper
we integrate artificial intelligence (AI) technology into a software-hardware coordinated system to make ADHD diagnosis more efficient. Together with the intelligent analysis module
the camera group will collect the eye focus
facial expression
3D body posture
and other children's information during the completion of the functional test. Then
a multi-modal deep learning model is proposed to classify abnormal behavior fragments of children from the captured videos. In combination with other system modules
standardized diagnostic reports can be automatically generated
including test results
abnormal behavior analysis
diagnostic aid conclusions
and treatment recommendations. This system has participated in clinical diagnosis in Department of Psychology
The Children's Hospital
Zhejiang University School of Medicine
and has been accepted and praised by doctors and patients.
注意缺陷多动障碍 (ADHD)辅助诊断计算机视觉深度学习BERT
Attention deficit hyperactivity disorder (ADHD)Auxiliary diagnosisComputer visionDeep learningBERT
AMS Aradhya, , , A Joglekar, , , S Suresh, , , 等. . Deep transformation method for discriminant analysis of multi-channel resting state fMRI. . Proc AAAI Conf on Artificial Intelligence, , 2019. . p.2556--2563. . DOI:10.1609/aaai.v33i01.33012556http://doi.org/10.1609/aaai.v33i01.33012556..
MS Atkins, , , WE Pelham, , , MH Licht. . A comparison of objective classroom measures and teacher ratings of attention deficit disorder. . J Abnorm Child Psychol, , 1985. . 13((1):):155--167. . DOI:10.1007/BF00918379http://doi.org/10.1007/BF00918379..
T Baltrušaitis, , , P Robinson, , , LP Morency. . Continuous conditional neural fields for structured regression. . Proc 13th European Conf on Computer Vision, , 2014. . p. 593--608. . DOI:10.1007/978-3-319-10593-2_39http://doi.org/10.1007/978-3-319-10593-2_39..
CJ Bench, , , CD Frith, , , PM Grasby, , , 等. . Investigations of the functional anatomy of attention using the Stroop test. . Neuropsychologia, , 1993. . 31((9):):907--922. . DOI:10.1016/0028-3932(93)90147-Rhttp://doi.org/10.1016/0028-3932(93)90147-R..
P Birleson, , , I Hudson, , , DG Buchanan, , , 等. . Clinical evaluation of a self-rating scale for depressive disorder in childhood (depression self-rating scale). . J Child Psychol Psych, , 1987. . 28((1):):43--60. . DOI:10.1111/j.1469-7610.1987.tb00651.xhttp://doi.org/10.1111/j.1469-7610.1987.tb00651.x..
B Birmaher, , , S Khetarpal, , , D Brent, , , 等. . The screen for child anxiety related emotional disorders (SCARED): scale construction and psychometric characteristics. . J Am Acad Child Adolesc Psych, , 1997. . 36((4):):545--553. . DOI:10.1097/00004583-199704000-00018http://doi.org/10.1097/00004583-199704000-00018..
Z Cao, , , T Simon, , , SE Wei, , , 等. . Realtime multi-person 2D pose estimation using part affinity fields. . Proc IEEE Conf on Computer Vision and Pattern Recognition, , 2017. . p. 7291--7299. . DOI:10.1109/CVPR.2017.143http://doi.org/10.1109/CVPR.2017.143..
M Chen, , , HL Li, , , JH Wang, , , 等. . A multichannel deep neural network model analyzing multiscale functional brain connectome data for attention deficit hyperactivity disorder detection. . Radiol Artif Intell, , 2019. . 2((1):):e190012DOI:10.1148/ryai.2019190012http://doi.org/10.1148/ryai.2019190012..
CK Conners, , , J Pitkanen, , , SR Rzepa. . Conners comprehensive behavior rating scale. In: Kreutzer JS, DeLuca J, Caplan B (Eds. ), Encyclopedia of Clinical Neuropsychology, , ::New York, USASpringer, , 2011. . p. 678--680. . DOI:10.1007/978-0-387-79948-3_1536http://doi.org/10.1007/978-0-387-79948-3_1536..
J Devlin, , , MW Chang, , , K Lee, , , 等. . BERT: pre-training of deep bidirectional transformers for language understanding. . Proc Conf of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, , 2019. . p.4171--4186. . DOI:10.18653/v1/N19-1423http://doi.org/10.18653/v1/N19-1423..
P Ekman. . Basic emotions. In: Dalgleish T, Dalgleish MJ (Eds. ), Handbook of Cognition and Emotion, , ::New York, USAWiley, , 1999. . p. 301--320. . DOI:10.1002/0470013494.ch3http://doi.org/10.1002/0470013494.ch3..
A Graves, , , J Schmidhuber. . Framewise phoneme classification with bidirectional LSTM and other neural network architectures. . Neur Netw, , 2005. . 18((5-6):):602--610. . DOI:10.1016/j.neunet.2005.06.042http://doi.org/10.1016/j.neunet.2005.06.042..
J Hamm, , , CG Kohler, , , RC Gur, , , 等. . Automated facial action coding system for dynamic analysis of facial expressions in neuropsychiatric disorders. . J Neurosci Meth, , 2011. . 200((2):):237--256. . DOI:10.1016/j.jneumeth.2011.06.023http://doi.org/10.1016/j.jneumeth.2011.06.023..
S Jaiswal, , , MF Valstar, , , A Gillott, , , 等. . Automatic detection of ADHD and ASD from expressive behaviour in RGBD data. . Proc 12th IEEE Int Conf on Automatic Face & Gesture Recognition, , 2017. . p. 762--769. . DOI:10.1109/FG.2017.95http://doi.org/10.1109/FG.2017.95..
DE King. . Dlib-ml: a machine learning toolkit. . J Mach Learn Res, , 2009. . 101755--1758. . ..
HW Kuhn. . The Hungarian method for the assignment problem. . Nav Res Logist Q, , 1955. . 2((1-2):):83--97. . DOI:10.1002/nav.3800020109http://doi.org/10.1002/nav.3800020109..
M Leo, , , P Carcagnì, , , C Distante, , , 等. . Computational assessment of facial expression production in ASD children. . Sensors, , 2018. . 18((11):):3993DOI:10.3390/s18113993http://doi.org/10.3390/s18113993..
V Lepetit, , , F Moreno-Noguer, , , P Fua. . EPnP: an accurate O(n) solution to the PnP problem. . Int J Comput Vis, , 2009. . 81((2):):155DOI:10.1007/s11263-008-0152-6http://doi.org/10.1007/s11263-008-0152-6..
J Li, , , YH Zhong, , , JX Han, , , 等. . Classifying ASD children with LSTM based on raw videos. . Neurocomputing, , 2019. . 390226--238. . DOI:10.1016/j.neucom.2019.05.106http://doi.org/10.1016/j.neucom.2019.05.106..
JL Marcano, , , MA Bell, , , AAL Beex. . Classification of ADHD and non-ADHD subjects using a universal background model. . Biomed Signal Process Contr, , 2018. . 39204--212. . DOI:10.1016/j.bspc.2017.07.023http://doi.org/10.1016/j.bspc.2017.07.023..
J Martinez, , , R Hossain, , , J Romero, , , 等. . A simple yet effective baseline for 3d human pose estimation. . Proc IEEE Int Conf on Computer Vision, , 2017. . p. 2640--2649. . DOI:10.1109/ICCV.2017.288http://doi.org/10.1109/ICCV.2017.288..
O Monchi, , , M Petrides, , , V Petre, , , 等. . Wisconsin card sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. . J Neurosci, , 2001. . 21((19):):7733--7741. . DOI:10.1523/JNEUROSCI.21-19-07733.2001http://doi.org/10.1523/JNEUROSCI.21-19-07733.2001..
M Muñoz-Organero, , , L Powell, , , B Heller, , , 等. . Using recurrent neural networks to compare movement patterns in ADHD and normally developing children based on acceleration signals from the wrist and ankle. . Sensors, , 2019. . 19((13):):2935DOI:10.3390/s19132935http://doi.org/10.3390/s19132935..
AM Oerlemans, , , JM van der Meer, , , DJ van Steijn, , , 等. . Recognition of facial emotion and affective prosody in children with ASD (+ADHD) and their unaffected siblings. . Eur Child Adolesc Psych, , 2014. . 23((5):):257--271. . DOI:10.1007/s00787-013-0446-2http://doi.org/10.1007/s00787-013-0446-2..
GV Polanczyk, , , EG Willcutt, , , GA Salum, , , 等. . ADHD prevalence estimates across three decades: an updated systematic review and meta-regression analysis. . Int J Epidemiol, , 2014. . 43((2):):434--442. . DOI:10.1093/ije/dyt261http://doi.org/10.1093/ije/dyt261..
JC Raven, , , JH Court, , , J Raven. . Manual for Raven's Progressive Matrices and Vocabulary Scales: Standard Progressive Matrices, , ::London, UKLewis,, , 1983. ..
K Sayal, , , V Prasad, , , D Daley, , , 等. . ADHD in children and young people: prevalence, care pathways, and service provision. . Lancet Psych, , 2018. . 5((2):):175--186. . DOI:10.1016/S2215-0366(17)30167-0http://doi.org/10.1016/S2215-0366(17)30167-0..
CF Saylor, , , AJ Finch, , , A Spirito, , , 等. . The children's depression inventory: a systematic evaluation of psychometric properties. . J Consult Clin Psychol, , 1984. . 52((6):):955--967. . DOI:10.1037/0022-006X.52.6.955http://doi.org/10.1037/0022-006X.52.6.955..
K Simonyan, , , A Zisserman. . Very deep convolutional networks for large-scale image recognition, , 2014. . https://arxiv.org/abs/1409.1556https://arxiv.org/abs/1409.1556, , ..
T Thompson, , , A Lloyd, , , A Joseph, , , 等. . The Weiss functional impairment rating scale-parent form for assessing ADHD: evaluating diagnostic accuracy and determining optimal thresholds using ROC analysis. . Qual Life Res, , 2017. . 26((7):):1879--1885. . DOI:10.1007/s11136-017-1514-8http://doi.org/10.1007/s11136-017-1514-8..
A Vaswani, , , N Shazeer, , , N Parmar, , , 等. . Attention is all you need. . Proc 31st Int Conf on Neural Information Processing Systems, , 2017. . p. 5998--6008. . ..
TT Wang, , , KH Liu, , , ZZ Li, , , 等. . Prevalence of attention deficit/hyperactivity disorder among children and adolescents in China: a systematic review and meta-analysis. . BMC Psych, , 2017. . 17((1):):32DOI:10.1186/s12888-016-1187-9http://doi.org/10.1186/s12888-016-1187-9..
EG Willcutt, , , JT Nigg, , , BF Pennington, , , 等. . Validity of DSM-IV attention deficit/hyperactivity disorder symptom dimensions and subtypes. . J Abnorm Psychol, , 2012. . 121((4):):991--1010. . DOI:10.1037/a0027347http://doi.org/10.1037/a0027347..
L Zou, , , JN Zheng, , , CY Miao, , , 等. . 3D CNN based automatic diagnosis of attention deficit hyperactivity disorder using functional and structural MRI. . IEEE Access, , 2017. . 523626--23636. . DOI:10.1109/ACCESS.2017.2762703http://doi.org/10.1109/ACCESS.2017.2762703..
关联资源
相关文章
相关作者
相关机构