FOLLOWUS
Beijing Key Laboratory of Multimedia and Intelligent Software Technology, Beijing Institute of Artificial Intelligence, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
Multimedia Laboratory, School of Computer Science, University of Sydney, Sydney NSW 2006, Australia
[ "Caixia LIU, E-mail: lcxxib@emails.bjut.edu.cn" ]
Shaofan WANG, E-mail: wangshaofan@bjut.edu.cn
纸质出版日期:2021-05,
收稿日期:2020-02-11,
修回日期:2020-12-29,
Scan QR Code
刘彩霞, 孔德慧, 王少帆, 等. 深度三维重建:方法、数据和挑战[J]. 信息与电子工程前沿(英文), 2021,22(5):652-672.
CAIXIA LIU, DEHUI KONG, SHAOFAN WANG, et al. Deep 3D reconstruction: methods, data, and challenges. [J]. Frontiers of information technology & electronic engineering, 2021, 22(5): 652-672.
刘彩霞, 孔德慧, 王少帆, 等. 深度三维重建:方法、数据和挑战[J]. 信息与电子工程前沿(英文), 2021,22(5):652-672. DOI: 10.1631/FITEE.2000068.
CAIXIA LIU, DEHUI KONG, SHAOFAN WANG, et al. Deep 3D reconstruction: methods, data, and challenges. [J]. Frontiers of information technology & electronic engineering, 2021, 22(5): 652-672. DOI: 10.1631/FITEE.2000068.
三维形状重建是计算机视觉、计算机图形学、模式识别和虚拟现实等领域的重要研究课题。现有三维重建方法通常存在两个瓶颈:(1)它们涉及多个人工设计阶段,导致累积误差,且难以自动学习三维形状的语义特征;(2)它们严重依赖图像内容和质量,以及精确校准的摄像机。因此,这些方法的重建精度难以提高。基于深度学习的三维重建方法通过利用深度网络自动学习低质量图像中的三维形状语义特征,克服了这两个瓶颈。然而,这些方法具有多种体系框架,但是至今未有文献对它们作深入分析和比较。本文对基于深度学习的三维重建方法进行全面综述。首先,基于不同深度学习模型框架,将基于深度学习的三维重建方法分为4类:递归神经网络、深自编码器、生成对抗网络和卷积神经网络,并对相应方法作详细分析。其次,详细介绍上述方法常用的4个代表性数据库。再次,对基于深度学习的三维重建方法进行综合比较,包括不同方法在同一数据库、同一方法在不同数据库以及同一方法对于不同视角个数输入的结果比较。最后,讨论了基于深度学习的三维重建方法的发展趋势。
Three-dimensional (3D) reconstruction of shapes is an important research topic in the fields of computer vision
computer graphics
pattern recognition
and virtual reality. Existing 3D reconstruction methods usually suffer from two bottlenecks: (1) they involve multiple manually designed states which can lead to cumulative errors
but can hardly learn semantic features of 3D shapes automatically; (2) they depend heavily on the content and quality of images
as well as precisely calibrated cameras. As a result
it is difficult to improve the reconstruction accuracy of those methods. 3D reconstruction methods based on deep learning overcome both of these bottlenecks by automatically learning semantic features of 3D shapes from low-quality images using deep networks. However
while these methods have various architectures
in-depth analysis and comparisons of them are unavailable so far. We present a comprehensive survey of 3D reconstruction methods based on deep learning. First
based on different deep learning model architectures
we divide 3D reconstruction methods based on deep learning into four types
recurrent neural network
deep autoencoder
generative adversarial network
and convolutional neural network based methods
and analyze the corresponding methodologies carefully. Second
we investigate four representative databases that are commonly used by the above methods in detail. Third
we give a comprehensive comparison of 3D reconstruction methods based on deep learning
which consists of the results of different methods with respect to the same database
the results of each method with respect to different databases
and the robustness of each method with respect to the number of views. Finally
we discuss future development of 3D reconstruction methods based on deep learning.
深度学习模型三维重建循环神经网络深度自编码器生成对抗网络卷积神经网络
Deep learning modelsThree-dimensional reconstructionRecurrent neural networkDeep autoencoderGenerative adversarial networkConvolutional neural network
S Agarwal, , , N Snavely, , , I Simon, , , 等. . Building Rome in a day. . IEEE 12th Int Conf on Computer Vision, , 2009. . p.72--79. . DOI:10.1109/ICCV.2009.5459148http://doi.org/10.1109/ICCV.2009.5459148..
I Akhter, , , MJ Black. . Pose-conditioned joint angle limits for 3D human pose reconstruction. . IEEE Conf on Computer Vision and Pattern Recognition, , 2015. . p. 1446--1455. . DOI:10.1109/CVPR.2015.7298751http://doi.org/10.1109/CVPR.2015.7298751..
A Bansal, , , B Russell, , , A Gupta. . Marr revisited: 2D-3D alignment via surface normal prediction. . IEEE Conf on Computer Vision and Pattern Recognition, , 2016. . p. 5965--5974. . DOI:10.1109/CVPR.2016.642http://doi.org/10.1109/CVPR.2016.642..
J Bruna, , , W Zaremba, , , A Szlam, , , 等. . Spectral networks and locally connected networks on graphs. . Int Conf on Learning Representations, , 2013. . p. 1--14. . ..
F Calakli, , , G Taubin. . SSD: smooth signed distance surface reconstruction. . Comput Graph Forum, , 2011. . 30((7):):1993--2002. . DOI:10.1111/j.1467-8659.2011.02058.xhttp://doi.org/10.1111/j.1467-8659.2011.02058.x..
YP Cao, , , ZN Liu, , , ZF Kuang, , , 等. . Learning to reconstruct high-quality 3D shapes with cascaded fully convolutional networks. . Proc 15th European Conf on Computer Vision, , 2018. . p. 616--633. . DOI:10.1007/978-3-030-01240-3_38http://doi.org/10.1007/978-3-030-01240-3_38..
AX Chang, , , T Funkhouser, , , L Guibas, , , 等. . ShapeNet: an information-rich 3D model repository. . 2015. . https://arxiv.org/abs/1512.03012https://arxiv.org/abs/1512.03012, , ..
K Chen, , , YK Lai, , , SM Hu. . 3D indoor scene modeling from RGB-D data: a survey. . Comput Vis Media, , 2015. . 1((4):):267--278. . DOI:10.1007/s41095-015-0029-xhttp://doi.org/10.1007/s41095-015-0029-x..
CB Choy, , , DF Xu, , , J Gwak, , , 等. . 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. . Proc 14th European Conf on Computer Vision, , 2016. . p. 628--644. . DOI:10.1007/978-3-319-46484-8_38http://doi.org/10.1007/978-3-319-46484-8_38..
TS Cohen, , , M Welling. . Group equivariant convolutional networks. . Proc 33rd Int Conf on Machine Learning, , 2016. . p. 2990--2999. . ..
TS Cohen, , , M Geiger, , , J Köhler, , , 等. . Spherical CNNs. . Int Conf on Learning Representations, , 2018. . p.1--15. . ..
A Dai, , , CR Qi, , , M Nießner. . Shape completion using 3D-encoder-predictor CNNs and shape synthesis. . IEEE Conf on Computer Vision and Pattern Recognition, , 2017. . p.6545--6554. . DOI:10.1109/CVPR.2017.693http://doi.org/10.1109/CVPR.2017.693..
E Denton, , , S Chintala, , , A Szlam, , , 等. . Deep generative image models using a Laplacian pyramid of adversarial networks. . Proc 28th Int Conf on Neural Information Processing Systems, , 2015. . p. 1486--1494. . ..
J Engel, , , T Schöps, , , D Cremers. . LSD-SLAM: large-scale direct monocular SLAM. . Proc 13th European Conf on Computer Vision, , 2014. . p.834--849. . DOI:10.1007/978-3-319-10605-2_54http://doi.org/10.1007/978-3-319-10605-2_54..
M Everingham, , , SMA Eslami, , , L van Gool, , , 等. . The PASCAL visual object classes challenge: a retrospective. . Int J Comput Vis, , 2015. . 111((1):):98--136. . DOI:10.1007/s11263-014-0733-5http://doi.org/10.1007/s11263-014-0733-5..
HQ Fan, , , H Su, , , L Guibas. . A point set generation network for 3D object reconstruction from a single image. . IEEE Conf on Computer Vision and Pattern Recognition, , 2017. . p. 2463--2471. . DOI:10.1109/CVPR.2017.264http://doi.org/10.1109/CVPR.2017.264..
A Fitzgibbon, , , A Zisserman. . Automatic 3D model acquisition and generation of new images from video sequences. . Proc 9th European Signal Processing Conf, , 1998. . p. 129--140. . ..
Y Furukawa, , , J Ponce. . Carved visual hulls for image-based modeling. . Proc 9th European Conf on Computer Vision, , 2006. . p.564--577. . DOI:10.1007/11744023_44http://doi.org/10.1007/11744023_44..
M Gadelha, , , S Maji, , , R Wang. . 3D shape induction from 2D views of multiple objects. . Int Conf on 3D Vision, , 2017. . p. 402--411. . DOI:10.1109/3DV.2017.00053http://doi.org/10.1109/3DV.2017.00053..
R Girdhar, , , DF Fouhey, , , M Rodriguez, , , 等. . Learning a predictable and generative vector representation for objects. . Proc 14th European Conf on Computer Vision, , 2016. . p. 484--499. . DOI:10.1007/978-3-319-46466-4_29http://doi.org/10.1007/978-3-319-46466-4_29..
M Goesele, , , N Snavely, , , B Curless, , , 等. . Multi-view stereo for community photo collections. . IEEE 11th Int Conf on Computer Vision, , 2007. . p. 1--8. . DOI:10.1109/ICCV.2007.4408933http://doi.org/10.1109/ICCV.2007.4408933..
I Goodfellow. . NIPS tutorial: generative adversarial networks. . 2016. . https://arxiv.org/abs/1701.00160https://arxiv.org/abs/1701.00160, , ..
IJ Goodfellow, , , J Pouget-Abadie, , , M Mirza, , , 等. . Generative adversarial nets. . Proc 27th Int Conf on Neural Information Processing Systems, , 2014. . p. 2672--2680. . ..
B Graham. . Spatially-sparse convolutional neural networks. . 2014. . https://arxiv.org/abs/1409.6070v1https://arxiv.org/abs/1409.6070v1, , ..
B Graham. . Sparse 3D convolutional neural networks. . Proc British Machine Vision Conf, , 2015. . p. 150.1--150.9. . DOI:10.5244/C.29.150http://doi.org/10.5244/C.29.150..
K Gregor, , , I Danihelka, , , A Graves, , , 等. . DRAW: a recurrent neural network for image generation. . Proc 32nd Int Conf on Machine Learning, , 2015. . p. 1462--1471. . ..
I Gulrajani, , , F Ahmed, , , M Arjovsky, , , 等. . Improved training of Wasserstein GANs. . Advances in Neural Information Processing Systems, , 2017. . p.5767--5777. . ..
J Gwak, , , CB Choy, , , M Chandraker, , , 等. . Weakly supervised 3D reconstruction with adversarial constraint. . Int Conf on 3D Vision, , 2017. . p.263--272. . DOI:10.1109/3DV.2017.00038http://doi.org/10.1109/3DV.2017.00038..
XF Han, , , H Laga, , , M Bennamoun. . Image-based 3D object reconstruction: state-of-the-art and trends in the deep learning era. . IEEE Trans Patt Anal Mach Intell, , 2019. . 43((5):):1578--1604. . DOI:10.1109/TPAMI.2019.2954885http://doi.org/10.1109/TPAMI.2019.2954885..
XG Han, , , Z Li, , , HB Huang, , , 等. . High-resolution shape completion using deep neural networks for global structure and local geometry inference. . IEEE Int Conf on Computer Vision, , 2017. . p. 85--93. . DOI:10.1109/ICCV.2017.19http://doi.org/10.1109/ICCV.2017.19..
C Häne, , , S Tulsiani, , , J Malik. . Hierarchical surface prediction for 3D object reconstruction. . Int Conf on 3D Vision, , 2017. . p. 412--420. . DOI:10.1109/3DV.2017.00054http://doi.org/10.1109/3DV.2017.00054..
P Henderson, , , V Ferrari. . Learning single-image 3D reconstruction by generative modelling of shape, pose and shading. . Int J Comput Vis, , 2019. . 128835--854. . DOI:10.1007/s11263-019-01219-8http://doi.org/10.1007/s11263-019-01219-8..
S Hochreiter, , , J Schmidhuber. . Long short-term memory. . Neur Comput, , 1997. . 9((8):):1735--1780. . DOI:10.1162/neco.1997.9.8.1735http://doi.org/10.1162/neco.1997.9.8.1735..
WZ Hu, , , SC Zhu. . Learning 3D object templates by quantizing geometry and appearance spaces. . IEEE Trans Patt Anal Mach Intell, , 2015. . 37((6):):1190--1205. . DOI:10.1109/TPAMI.2014.2362141http://doi.org/10.1109/TPAMI.2014.2362141..
QX Huang, , , H Wang, , , V Koltun. . Single-view reconstruction via joint analysis of image and shape collections. . ACM Trans Graph, , 2015. . 34((4):):87DOI:10.1145/2766890http://doi.org/10.1145/2766890..
TN Kipf, , , M Welling. . Semi-supervised classification with graph convolutional networks. . Int Conf on Learning Representations, , 2017. . p. 1--13. . ..
C Kong, , , CH Lin, , , S Lucey. . Using locally corresponding CAD models for dense 3D reconstructions from a single image. . IEEE Conf on Computer Vision and Pattern Recognition, , 2017. . p.5603--5611. . DOI:10.1109/CVPR.2017.594http://doi.org/10.1109/CVPR.2017.594..
A Krizhevsky, , , I Sutskever, , , GE Hinton. . ImageNet classification with deep convolutional neural networks. . Proc 25th Int Conf on Neural Information Processing Systems, , 2012. . p. 1--9. . ..
H Laga. . A survey on deep learning architectures for image-based depth reconstruction. . 2019. . https://arxiv.org/abs/1906.06113https://arxiv.org/abs/1906.06113, , ..
M Lhuillier, , , L Quan. . A quasi-dense approach to surface reconstruction from uncalibrated images. . IEEE Trans Patt Anal Mach Intell, , 2005. . 27((3):):418--433. . DOI:10.1109/TPAMI.2005.44http://doi.org/10.1109/TPAMI.2005.44..
C Li, , , M Wand. . Precomputed real-time texture synthesis with Markovian generative adversarial networks. . Proc 14th European Conf on Computer Vision, , 2016. . p. 702--716. . DOI:10.1007/978-3-319-46487-9_43http://doi.org/10.1007/978-3-319-46487-9_43..
YY Li, , , A Dai, , , L Guibas, , , 等. . Database-assisted object retrieval for real-time 3D reconstruction. . Comput Graph Forum, , 2015. . 34((2):):435--446. . DOI:10.1111/cgf.12573http://doi.org/10.1111/cgf.12573..
JJ Lim, , , H Pirsiavash, , , A Torralba. . Parsing IKEA objects: fine pose estimation. . IEEE Int Conf on Computer Vision, , 2014. . p. 2992--2999. . DOI:10.1109/ICCV.2013.372http://doi.org/10.1109/ICCV.2013.372..
CH Lin, , , C Kong, , , S Lucey. . Learning efficient point cloud generation for dense 3D object reconstruction. . AAAI Conf on Artificial Intelligence, , 2018. . p. 7114--7121. . ..
SC Liu, , , WK Chen, , , TY Li, , , 等. . Soft rasterizer: differentiable rendering for unsupervised single-view mesh reconstruction. . 2019. . https://arxiv.org/abs/1901.05567v1https://arxiv.org/abs/1901.05567v1, , ..
ZL Lun, , , M Gadelha, , , E Kalogerakis, , , 等. . 3D shape reconstruction from sketches via multi-view convolutional networks. . Int Conf on 3D Vision, , 2017. . p. 67--77. . DOI:10.1109/3DV.2017.00018http://doi.org/10.1109/3DV.2017.00018..
LL Nan, , , K Xie, , , A Sharf. . A search-classify approach for cluttered indoor scene understanding. . ACM Trans Graph, , 2012. . 31((6):):137.1--137.10. . DOI:10.1145/2366145.2366156http://doi.org/10.1145/2366145.2366156..
C Nash, , , CKI Williams. . The shape variational autoencoder: a deep generative model of part-segmented 3D objects. . Comput Graph Forum, , 2017. . 36((5):):1--12. . DOI:10.1111/cgf.13240http://doi.org/10.1111/cgf.13240..
A Newell, , , KY Yang, , , J Deng. . Stacked hourglass networks for human pose estimation. . Proc 14th European Conf on Computer Vision, , 2016. . p. 483--499. . DOI:10.1007/978-3-319-46484-8_29http://doi.org/10.1007/978-3-319-46484-8_29..
CJ Niu, , , J Li, , , K Xu. . Im2Struct: recovering 3D shape structure from a single RGB image. . IEEE/CVF Conf on Computer Vision and Pattern Recognition, , 2018. . p. 1--9. . DOI:10.1109/CVPR.2018.00475http://doi.org/10.1109/CVPR.2018.00475..
JK Pontes, , , C Kong, , , A Eriksson, , , 等. . Compact model representation for 3D reconstruction. . Int Conf on 3D Vision, , 2017. . p. 88--96. . DOI:10.1109/3DV.2017.00020http://doi.org/10.1109/3DV.2017.00020..
JK Pontes, , , C Kong, , , S Sridharan, , , 等. . Image2Mesh: a learning framework for single image 3D reconstruction. . Proc 14th Asian Conf on Computer Vision, , 2018. . p. 365--381. . DOI:10.1007/978-3-030-20887-5_23http://doi.org/10.1007/978-3-030-20887-5_23..
A Radford, , , L Metz, , , S Chintala. . Unsupervised representation learning with deep convolutional generative adversarial networks. . Int Conf on Learning Representations, , 2015. . p. 1--16. . ..
DJ Rezende, , , SMA Eslami, , , S Mohamed, , , 等. . Unsupervised learning of 3D structure from images. . Proc 30th Conf on Neural Information Processing Systems, , 2016. . p.4997--5005. . ..
TJ Shao, , , WW Xu, , , K Zhou, , , 等. . An interactive approach to semantic modeling of indoor scenes with an RGBD camera. . ACM Trans Graph, , 2012. . 31((6):):136DOI:10.1145/2366145.2366155http://doi.org/10.1145/2366145.2366155..
YF Shi, , , PX Long, , , K Xu, , , 等. . Data-driven contextual modeling for 3D scene understanding. . Comput Graph, , 2016. . 5555--67. . DOI:10.1016/j.cag.2015.11.003http://doi.org/10.1016/j.cag.2015.11.003..
N Silberman, , , D Hoiem, , , P Kohli, , , 等. . Indoor segmentation and support inference from RGBD images. . Proc 12th European Conf on Computer Vision, , 2012. . p. 746--760. . DOI:10.1007/978-3-642-33715-4_54http://doi.org/10.1007/978-3-642-33715-4_54..
K Simonyan, , , A Zisserman. . Very deep convolutional networks for large-scale image recognitions. . Int Conf on Learning Representations, , 2015. . p. 1--14. . ..
EJ Smith, , , D Meger. . Improved adversarial systems for 3D object generation and reconstruction. . Proc 1st Annual Conf on Robot Learning, , 2017. . p.87--96. . ..
XY Sun, , , JJ Wu, , , XM Zhang, , , 等. . Pix3D: dataset and methods for single-image 3D shape modeling. . IEEE/CVF Conf on Computer Vision and Pattern Recognition, , 2018. . p.2974--2983. . DOI:10.1109/CVPR.2018.00314http://doi.org/10.1109/CVPR.2018.00314..
YY Sun. . A survey of 3D reconstruction based on single image. . J North China Univ Technol, , 2011. . 23((1):):9--13. . DOI:10.3969/j.issn.1001-5477.2011.01.002http://doi.org/10.3969/j.issn.1001-5477.2011.01.002..
M Sundermeyer, , , R Schlüter, , , H Ney. . LSTM neural networks for language modeling. . 2012. . https://core.ac.uk/display/22066040https://core.ac.uk/display/22066040, , ..
I Sutskever, , , O Vinyals, , , Q Le. . Sequence to sequence learning with neural networks. . Proc 27th Int Conf on Neural Information Processing Systems, , 2014. . p. 3104--3112. . ..
M Tatarchenko, , , A Dosovitskiy, , , T Brox. . Octree generating networks: efficient convolutional architectures for high-resolution 3D outputs. . IEEE Int Conf on Computer Vision, , 2017. . p.2107--2115. . DOI:10.1109/ICCV.2017.230http://doi.org/10.1109/ICCV.2017.230..
JD Udayan, , , H Kim, , , JI Kim. . An image-based approach to the reconstruction of ancient architectures by extracting and arranging 3D spatial components. . Front Inform Technol Electron Eng, , 2015. . 16((1):):12--27. . DOI:10.1631/FITEE.1400141http://doi.org/10.1631/FITEE.1400141..
J Varley, , , C DeChant, , , A Richardson, , , 等. . Shape completion enabled robotic grasping. . IEEE/RSJ Int Conf on Intelligent Robots and Systems, , 2017. . p. 2442--2447. . DOI:10.1109/IROS.2017.8206060http://doi.org/10.1109/IROS.2017.8206060..
LJ Wang, , , Y Fang. . Unsupervised 3D reconstruction from a single image via adversarial learning. . 2017. . https://arxiv.org/abs/1711.09312https://arxiv.org/abs/1711.09312, , ..
NY Wang, , , YD Zhang, , , ZW Li, , , 等. . Pixel2Mesh: generating 3D mesh models from single RGB images. . Proc 15th European Conf on Computer Vision, , 2018. . p. 55--71. . DOI:10.1007/978-3-030-01252-6_4http://doi.org/10.1007/978-3-030-01252-6_4..
XL Wang, , , A Gupta. . Generative image modeling using style and structure adversarial networks. . Proc 14th European Conf on Computer Vision, , 2016. . p. 318--335. . DOI:10.1007/978-3-319-46493-0_20http://doi.org/10.1007/978-3-319-46493-0_20..
JJ Wu, , , CK Zhang, , , TF Xue, , , 等. . Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. . Advances in Neural Information Processing Systems, , 2016a. . p. 82--90. . ..
JJ Wu, , , TF Xue, , , JJ Lim, , , 等. . Single image 3D interpreter network. . Proc 14th European Conf on Computer Vision, , 2016b. . p.365--382. . DOI:10.1007/978-3-319-46466-4_22http://doi.org/10.1007/978-3-319-46466-4_22..
JJ Wu, , , YF Wang, , , TF Xue, , , 等. . MarrNet: 3D shape reconstruction via 2.5D sketches. . Advances in Neural Information Processing Systems, , 2017. . p. 540--550. . ..
ZR Wu, , , SR Song, , , A Khosla, , , 等. . 3D ShapeNets: a deep representation for volumetric shapes. . IEEE Conf on Computer Vision and Pattern Recognition, , 2015. . p.1912--1920. . DOI:10.1109/CVPR.2015.7298801http://doi.org/10.1109/CVPR.2015.7298801..
Y Xiang, , , R Mottaghi, , , S Savarese. . Beyond PASCAL: a benchmark for 3D object detection in the wild. . IEEE Winter Conf on Applications of Computer Vision, , 2014. . p. 75--82. . DOI:10.1109/WACV.2014.6836101http://doi.org/10.1109/WACV.2014.6836101..
Y Xiang, , , W Kim, , , W Chen, , , 等. . ObjectNet3D: a large scale database for 3D object recognition. . Proc 14th European Conf on Computer Vision, , 2016. . p. 160--176. . DOI:10.1007/978-3-319-46484-8_10http://doi.org/10.1007/978-3-319-46484-8_10..
JX Xiao, , , J Hays, , , KA Ehinger, , , 等. . SUN database: large-scale scene recognition from abbey to zoo. . IEEE Computer Society Conf on Computer Vision and Pattern Recognition, , 2010. . p. 3485--3492. . DOI:10.1109/CVPR.2010.5539970http://doi.org/10.1109/CVPR.2010.5539970..
HZ Xie, , , HX Yao, , , XS Sun, , , 等. . Pix2Vox: context-aware 3D reconstruction from single and multi-view images. . IEEE/CVF Int Conf on Computer Vision, , 2019. . p. 1--9. . DOI:10.1109/ICCV.2019.00278http://doi.org/10.1109/ICCV.2019.00278..
XC Yan, , , JM Yang, , , E Yumer, , , 等. . Perspective transformer nets: learning single-view 3D object reconstruction without 3D supervision. . Advances in Neural Information Processing Systems, , 2016. . p. 1696--1704. . ..
B Yang, , , HK Wen, , , S Wang, , , 等. . 3D object reconstruction from a single depth view with adversarial learning. . IEEE Int Conf on Computer Vision Workshop, , 2018. . p.679--688. . DOI:10.1109/ICCVW.2017.86http://doi.org/10.1109/ICCVW.2017.86..
B Yang, , , S Rosa, , , A Markham, , , 等. . 3D object dense reconstruction from a single depth view. . IEEE Trans Patt Anal Mach Intell, , 2019. . 41((12):):2820--2834. . DOI:10.1109/TPAMI.2018.2868195http://doi.org/10.1109/TPAMI.2018.2868195..
B Yang, , , S Wang, , , A Markham, , , 等. . Robust attentional aggregation of deep feature sets for multi-view 3D reconstruction. . Int J Comput Vis, , 2020. . 12853--73. . DOI:10.1007/s11263-019-01217-whttp://doi.org/10.1007/s11263-019-01217-w..
MD Zeiler, , , D Krishnan, , , GW Taylor, , , 等. . Deconvolutional networks. . IEEE Computer Society Conf on Computer Vision and Pattern Recognition, , 2010. . p.2528--2535. . DOI:10.1109/CVPR.2010.5539957http://doi.org/10.1109/CVPR.2010.5539957..
CY Zhu, , , RH Byrd, , , PH Lu, , , 等. . Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. . ACM Trans Math Softw, , 1997. . 23((4):):550--560. . DOI:10.1145/279232.279236http://doi.org/10.1145/279232.279236..
CH Zou, , , E Yumer, , , JM Yang, , , 等. . 3D-PRNN: generating shape primitives with recurrent neural networks. . IEEE Int Conf on Computer Vision, , 2017. . p.900--909. . DOI:10.1109/ICCV.2017.103http://doi.org/10.1109/ICCV.2017.103..
关联资源
相关文章
相关作者
相关机构