FOLLOWUS
School of Physics and Electronic Engineering, Xianyang Normal University, Xianyang 712000, China
School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
ZHANG Xiaoqing, E-mail: 249140543@qq.com
纸质出版日期:2021-06,
收稿日期:2020-04-24,
修回日期:2021-05-17,
Scan QR Code
张小青, 张玉叶, 明正峰. 改进的动态灰狼优化算法[J]. 信息与电子工程前沿(英文), 2021,22(6):877-890.
XIAOQING ZHANG, YUYE ZHANG, ZHENGFENG MING. Improved dynamic grey wolf optimizer. [J]. Frontiers of information technology & electronic engineering, 2021, 22(6): 877-890.
张小青, 张玉叶, 明正峰. 改进的动态灰狼优化算法[J]. 信息与电子工程前沿(英文), 2021,22(6):877-890. DOI: 10.1631/FITEE.2000191.
XIAOQING ZHANG, YUYE ZHANG, ZHENGFENG MING. Improved dynamic grey wolf optimizer. [J]. Frontiers of information technology & electronic engineering, 2021, 22(6): 877-890. DOI: 10.1631/FITEE.2000191.
在标准灰狼优化算法(GWO)中,搜索狼必须等到其他搜索狼与3个领导狼之间的比较完成后才能更新其当前位置矢量。正因为有此等待时间,标准GWO被视为静态GWO。为消除这种等待时间,提出两种动态GWO算法:第一种动态灰狼优化算法(DGWO1)和第二种动态灰狼优化算法(DGWO2)。在动态GWO算法中,当前搜索狼不需要等待所有其他搜索狼与领导狼的比较,在完成自身或前一匹搜索狼与领导狼的比较后,即可更新其位置矢量。动态GWO算法及时更新搜索狼的位置,提高了算法迭代收敛速度。以动态GWO算法结构为基础,对其他改进GWO算法也进行了一定的性能测验。实验证明,对同一改进GWO算法,以动态GWO结构为基础时的性能总体上优于以静态GWO结构为基础时的性能。
In the standard grey wolf optimizer (GWO)
the search wolf must wait to update its current position until the comparison between the other search wolves and the three leader wolves is completed. During this waiting period
the standard GWO is seen as the static GWO. To get rid of this waiting period
two dynamic GWO algorithms are proposed: the first dynamic grey wolf optimizer (DGWO1) and the second dynamic grey wolf optimizer (DGWO2). In the dynamic GWO algorithms
the current search wolf does not need to wait for the comparisons between all other search wolves and the leading wolves
and its position can be updated after completing the comparison between itself or the previous search wolf and the leading wolves. The position of the search wolf is promptly updated in the dynamic GWO algorithms
which increases the iterative convergence rate. Based on the structure of the dynamic GWOs
the performance of the other improved GWOs is examined
verifying that for the same improved algorithm
the one based on dynamic GWO has better performance than that based on static GWO in most instances.
群智能灰狼优化算法动态灰狼优化算法优化实验
Swarm intelligenceGrey wolf optimizerDynamic grey wolf optimizerOptimization experiment
MA Al-Betar, , , MA Awadallah, , , H Faris, , , 等. . Natural selection methods for grey wolf optimizer. . Expert Syst Appl, , 2018. . 113481--499. . DOI:10.1016/j.eswa.2018.07.022http://doi.org/10.1016/j.eswa.2018.07.022..
SL Cong, , , J Sun, , , HP Mao, , , 等. . Non-destructive detection for mold colonies in rice based on hyperspectra and GWO-SVR. . J Sci Food Agric, , 2018. . 98((4):):1453--1459. . DOI:10.1002/jsfa.8613http://doi.org/10.1002/jsfa.8613..
E Daniel. . Optimum wavelet based homomorphic medical image fusion using hybrid genetic-grey wolf optimization algorithm. . IEEE Sens J, , 2018. . 18((6):):6804--6811. . DOI:10.1109/JSEN.2018.2822712http://doi.org/10.1109/JSEN.2018.2822712..
E Emary, , , HM Zawbaa, , , AE Hassanien. . Binary grey wolf optimization approaches for feature selection. . Neurocomputing, , 2016. . 172371--381. . DOI:10.1016/j.neucom.2015.06.083http://doi.org/10.1016/j.neucom.2015.06.083..
S Gupta, , , K Deep. . Cauchy grey wolf optimiser for continuous optimisation problems. . J Exp Theor Artif Intell, , 2018. . 30((6):):1051--1075. . DOI:10.1080/0952813X.2018.1513080http://doi.org/10.1080/0952813X.2018.1513080..
S Gupta, , , K Deep. . Hybrid grey wolf optimizer with mutation operator. . In: Bansal JC, Das KN, Nagar A, et al. (Eds. ), Soft Computing for Problem Solving. Springer, Singapore, , 2019a. . p961--968. . DOI:10.1007/978-981-13-1595-4_75http://doi.org/10.1007/978-981-13-1595-4_75..
S Gupta, , , K Deep. . A novel random walk grey wolf optimizer. . Swarm Evol Comput, , 2019b. . 44101--112. . DOI:10.1016/j.swevo.2018.01.001http://doi.org/10.1016/j.swevo.2018.01.001..
S Gupta, , , K Deep. . An opposition-based chaotic grey wolf optimizer for global optimisation tasks. . J Exp Theor Artif Intelll, , 2019c. . 31((5):):751--779. . DOI:10.1080/0952813X.2018.1554712http://doi.org/10.1080/0952813X.2018.1554712..
S Gupta, , , K Deep. . A memory-based grey wolf optimizer for global optimization tasks. . Appl Soft Comput, , 2020. . 93106367DOI:10.1016/j.asoc.2020.106367http://doi.org/10.1016/j.asoc.2020.106367..
S Gupta, , , K Deep, , , H Moayedi, , , 等. . Sine cosine grey wolf optimizer to solve engineering design problems. . Eng Comput, online., , 2020. . DOI:10.1007/s00366-020-00996-yhttp://doi.org/10.1007/s00366-020-00996-y..
XL Liu, , , Y Tian, , , XH Lei, , , 等. . An improved selfadaptive grey wolf optimizer for the daily optimal operation of cascade pumping stations. . Appl Soft Comput, , 2019. . 75473--493. . DOI:10.1016/j.asoc.2018.11.039http://doi.org/10.1016/j.asoc.2018.11.039..
W Long, , , JJ Jiao, , , XM Liang, , , 等. . An explorationenhanced grey wolf optimizer to solve high-dimensional numerical optimization. . Eng Appl Artif Intell, , 2018. . 6863--80. . DOI:10.1016/j.engappai.2017.10.024http://doi.org/10.1016/j.engappai.2017.10.024..
C Lu, , , SQ Xiao, , , XY Li, , , 等. . An effective multi-objective discrete grey wolf optimizer for a real-world scheduling problem in welding production. . Adv Eng Softw, , 2016. . 99161--176. . DOI:10.1016/j.advengsoft.2016.06.004http://doi.org/10.1016/j.advengsoft.2016.06.004..
S Mirjalili, , , SM Mirjalili, , , A Lewis. . Grey wolf optimizer. . Adv Eng Softw, , 2014. . 6946--61. . DOI:10.1016/j.advengsoft.2013.12.007http://doi.org/10.1016/j.advengsoft.2013.12.007..
S Mirjalili, , , S Saremi, , , SM Mirjalili, , , 等. . Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. . Expert Syst Appl, , 2016. . 47106--119. . DOI:10.1016/j.eswa.2015.10.039http://doi.org/10.1016/j.eswa.2015.10.039..
MH Qais, , , HM Hasanien, , , S Alghuwainem. . Augmented grey wolf optimizer for grid-connected PMSG-based wind energy conversion systems. . Appl Soft Comput, , 2018. . 69504--515. . DOI:10.1016/j.asoc.2018.05.006http://doi.org/10.1016/j.asoc.2018.05.006..
L Rodríguez, , , O Castillo, , , J Soria, , , 等. . A fuzzy hierarchical operator in the grey wolf optimizer algorithm. . Appl Soft Comput, , 2017. . 57315--328. . DOI:10.1016/j.asoc.2017.03.048http://doi.org/10.1016/j.asoc.2017.03.048..
BP Sahoo, , , S Panda. . Improved grey wolf optimization technique for fuzzy aided PID controller design for power system frequency control. . Sustain Energy Grids Netw, , 2018. . 16278--299. . DOI:10.1016/j.segan.2018.09.006http://doi.org/10.1016/j.segan.2018.09.006..
S Saremi, , , SZ Mirjalili, , , SM Mirjalili. . Evolutionary population dynamics and grey wolf optimizer. . Neur Comput Appl, , 2015. . 26((5):):1257--1263. . DOI:10.1007/s00521-014-1806-7http://doi.org/10.1007/s00521-014-1806-7..
A Saxena, , , R Kumar, , , S Das. . β-Chaotic map enabled grey wolf optimizer. . Appl Soft Comput, , 2019. . 7584--105. . DOI:10.1016/j.asoc.2018.10.044http://doi.org/10.1016/j.asoc.2018.10.044..
AK Tripathi, , , K Sharma, , , M Bala. . A novel clustering method using enhanced grey wolf optimizer and MapReduce. . Big Data Res, , 2018. . 1493--100. . DOI:10.1016/j.bdr.2018.05.002http://doi.org/10.1016/j.bdr.2018.05.002..
GH Wu, , , R Mallipeddi, , , PN Suganthan. . Problem Definitions and Evaluation Criteria for the CEC 2017 Competition and Special Session on Constrained Single Objective Real-Parameter Optimization. Technical Report, No. 201212, , ::SingaporeNanyang Technological University, , 2016. ..
HM Zawbaa, , , E Emary, , , C Grosan, , , 等. . Large-dimensionality small-instance set feature selection: a hybrid bio-inspired heuristic approach. . Swarm Evol Comput, , 2018. . 4229--42. . DOI:10.1016/j.swevo.2018.02.021http://doi.org/10.1016/j.swevo.2018.02.021..
S Zhang, , , YQ Zhou. . Grey wolf optimizer based on Powell local optimization method for clustering analysis. . Discr Dynam Nat Soc, , 2015. . 2015481360DOI:10.1155/2015/481360http://doi.org/10.1155/2015/481360..
XM Zhang, , , Q Kang, , , JF Cheng, , , 等. . A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer. . Appl Soft Comput, , 2018. . 67197--214. . DOI:10.1016/j.asoc.2018.02.049http://doi.org/10.1016/j.asoc.2018.02.049..
XQ Zhang, , , ZF Ming. . An optimized grey wolf optimizer based on a mutation operator and eliminating-reconstructing mechanism and its application. . Front Inform Technol Electron Eng, , 2017. . 18((11):):1705--1719. . DOI:10.1631/FITEE.1601555http://doi.org/10.1631/FITEE.1601555..
关联资源
相关文章
相关作者
相关机构