FOLLOWUS
1.Department of Graduates, Early Warning Academy, Wuhan430019, China
2.No. 4 Department, Early Warning Academy, Wuhan430019, China
‡Corresponding authors
E-mail: tiankangsheng@sohu.com
纸质出版日期:2022-03,
网络出版日期:2022-02-05,
收稿日期:2020-10-19,
修回日期:2021-01-18,
Scan QR Code
孟繁卿, 田康生. 探测高超声速滑翔飞行器的区间二型模糊逻辑雷达任务优先级分配方法[J]. 信息与电子工程前沿(英文), 2022,23(3):488-501.
FANQING MENG, KANGSHENG TIAN. Interval type-2 fuzzy logic based radar task priority assignment method for detecting hypersonic-glide vehicles. [J]. Frontiers of information technology & electronic engineering, 2022, 23(3): 488-501.
孟繁卿, 田康生. 探测高超声速滑翔飞行器的区间二型模糊逻辑雷达任务优先级分配方法[J]. 信息与电子工程前沿(英文), 2022,23(3):488-501. DOI: 10.1631/FITEE.2000560.
FANQING MENG, KANGSHENG TIAN. Interval type-2 fuzzy logic based radar task priority assignment method for detecting hypersonic-glide vehicles. [J]. Frontiers of information technology & electronic engineering, 2022, 23(3): 488-501. DOI: 10.1631/FITEE.2000560.
针对相控阵雷达探测临近空间高超声速滑翔飞行器时的资源管理问题,设计了一种基于区间二型模糊逻辑系统的雷达任务优先级分配方法。详细阐述了雷达任务数学模型、高超声速滑翔目标的运动模型和探测模型。将高超声速滑翔飞行器的目标威胁划分为机动威胁、速度威胁、方位威胁和距离威胁。此方法中,机动因子、速度、方位、距离和初始优先级为输入变量,雷达任务优先级为输出变量。为减少模糊规则数、避免规则爆炸,设计了分层结构的区间二型模糊逻辑系统。最后,通过仿真验证该方法可行性。结果表明,基于区间二型模糊逻辑系统的任务优先级分配方法具有更高的精确跟踪率、平均初始优先级和目标威胁度以及更短的偏移时间。
A radar task priority assignment method based on interval type-2 fuzzy logic system (IT2FLS) was designed to solve the problem of resource management for phased-array radar to detect hypersonic-glide vehicles (HGVs). The mathematical model of the radar task and the motion and detection models of HGVs are described in detail. The target threat of an HGV is divided into maneuver
speed
azimuth
and distance threats. In the radar task priority assignment method based on IT2FLS
the maneuver factor
speed
azimuth difference
distance
and initial priority are input variables. The radar task priority is the output variable. To reduce the number of fuzzy rules and avoid rule explosion
an IT2FLS with a hierarchical structure was designed. Finally
the feasibility of the task priority assignment method was verified by simulations. Simulation results showed that the method based on IT2FLS has a higher precise tracking rate
mean initial priority
and target threat degree
and a shorter offset time.
高超声速滑翔飞行器相控阵雷达区间二型模糊逻辑系统优先级分配
Hypersonic-glide vehicle (HGV)Phased-array radarInterval type-2 fuzzy logic system (IT2FLS)Priority assignment
Bao PF, Huang XP, Zhou XC, 2018. Adaptive scheduling algorithm for passive radar tasks with integrated priority. Mod Def Technol, 46(1):141-147, 183(in Chinese). https://doi.org/10.3969/j.issn.1009-086x.2018.01.023https://doi.org/10.3969/j.issn.1009-086x.2018.01.023
Castillo O, Cervantes L, Soria J, et al., 2016a. A generalized type-2 fuzzy granular approach with applications to aerospace. Inform Sci, 354:165-177. https://doi.org/10.1016/j.ins.2016.03.001https://doi.org/10.1016/j.ins.2016.03.001
Castillo O, Amador-Angulo L, Castro JR, et al., 2016b. A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems. Inform Sci, 354:257-274. https://doi.org/10.1016/j.ins.2016.03.026https://doi.org/10.1016/j.ins.2016.03.026
Castillo O, Melin P, Ontiveros E, et al., 2019. A high-speed interval type 2 fuzzy system approach for dynamic parameter adaptation in metaheuristics. Eng Appl Artif Intell, 85:666-680. https://doi.org/10.1016/j.engappai.2019.07.020https://doi.org/10.1016/j.engappai.2019.07.020
Cervantes L, Castillo O, 2015. Type-2 fuzzy logic aggregation of multiple fuzzy controllers for airplane flight control. Inform Sci, 324:247-256. https://doi.org/10.1016/j.ins.2015.06.047https://doi.org/10.1016/j.ins.2015.06.047
Ding Z, Moo P, 2017. Benefits of target prioritization for phased array radar resource management. Proc 18th Int Radar Symp, p.1-7. https://doi.org/10.23919/IRS.2017.8008153https://doi.org/10.23919/IRS.2017.8008153
Duan GR, Sun Y, Zhang MR, et al., 2010. Aerodynamic coefficients models of hypersonic vehicle based on aero database. Proc 1st Int Conf on Pervasive Computing, Signal Processing and Applications, p.1001-1004. https://doi.org/10.1109/PCSPA.2010.247https://doi.org/10.1109/PCSPA.2010.247
Guo KP, Zuo Y, Xue AK, 2013. An adaptive task scheduling algorithm based on the fuzzy logic priority for multifunction radars. J Jiangnan Univ (Nat Sci Ed), 12(5):591-595(in Chinese). https://doi.org/10.3969/j.issn.1671-7147.2013.05.015https://doi.org/10.3969/j.issn.1671-7147.2013.05.015
Jiménez MI, del Val L, Villacorta JJ, et al., 2012. Design of task scheduling process for a multifunction radar. IET Radar Sonar Navig, 6(5):341-347. https://doi.org/10.1049/iet-rsn.2011.0309https://doi.org/10.1049/iet-rsn.2011.0309
Kumar GN, Ikram M, Sarkar AK, et al., 2018. Hypersonic flight vehicle trajectory optimization using pattern search algorithm. Optim Eng, 19(1):125-161. https://doi.org/10.1007/s11081-017-9367-0https://doi.org/10.1007/s11081-017-9367-0
Li B, Tian LY, Chen DQ, et al., 2020. A task scheduling algorithm for phased-array radar based on dynamic three-way decision. Sensors, 20(1):153. https://doi.org/10.3390/s20010153https://doi.org/10.3390/s20010153
Li GH, Zhang HB, Tang GJ, 2015. Maneuver characteristics analysis for hypersonic glide vehicles. Aerosp Sci Technol, 43:321-328. https://doi.org/10.1016/j.ast.2015.03.016https://doi.org/10.1016/j.ast.2015.03.016
Li GH, Zhang HB, Tang GJ, 2017. Flight-corridor analysis for hypersonic glide vehicles. J Aerosp Eng, 30(1):06016005. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000667https://doi.org/10.1061/(ASCE)AS.1943-5525.0000667
Lu JB, Hu WD, Yu WX, 2006. Study on real-time task scheduling of multifunction phased array radars. Acta Electron Sin, 34(4):732-736(in Chinese). https://doi.org/10.3321/j.issn:0372-2112.2006.04.032https://doi.org/10.3321/j.issn:0372-2112.2006.04.032
Mendel JM, 2017. Uncertain Rule-Based Fuzzy Systems: Introduction and New Directions (2nd Ed.). Springer, Cham, Germany. https://doi.org/10.1007/978-3-319-51370-6https://doi.org/10.1007/978-3-319-51370-6
Meng FQ, Tian KS, 2020. Analysis on influence of the bank angle of hypersonic glide vehicle. J Astronaut, 41(4):419-428. https://doi.org/10.3873/j.issn.1000-1328.2020.04.005https://doi.org/10.3873/j.issn.1000-1328.2020.04.005
Miranda SLC, Baker CJ, Woodbridge K, et al., 2007. Fuzzy logic approach for prioritisation of radar tasks and sectors of surveillance in multifunction radar. IET Radar Sonar Navig, 1(2):131-141. https://doi.org/10.1049/iet-rsn:20050106https://doi.org/10.1049/iet-rsn:20050106
Moreno JE, Sanchez MA, Mendoza O, et al., 2020. Design of an interval type-2 fuzzy model with justifiable uncertainty. Inform Sci, 513:206-221. https://doi.org/10.1016/j.ins.2019.10.042https://doi.org/10.1016/j.ins.2019.10.042
Ontiveros E, Melin P, Castillo O, 2020. Comparative study of interval type-2 and general type-2 fuzzy systems in medical diagnosis. Inform Sci, 525:37-53. https://doi.org/10.1016/j.ins.2020.03.059https://doi.org/10.1016/j.ins.2020.03.059
Ontiveros-Robles E, Melin P, Castillo O, 2018. Comparative analysis of noise robustness of type 2 fuzzy logic controllers. Kybernetika, 54(1):175-201. https://doi.org/10.14736/kyb-2018-1-0175https://doi.org/10.14736/kyb-2018-1-0175
Wang LX, 1999. Analysis and design of hierarchical fuzzy systems. IEEE Trans Fuzzy Syst, 7(5):617-624. https://doi.org/10.1109/91.797984https://doi.org/10.1109/91.797984
Wu J, Lu F, Zhang JW, et al., 2020. Design of task priority model and algorithm for imaging observation problem. J Syst Eng Electron, 31(2):321-334. https://doi.org/10.23919/JSEE.2020.000010https://doi.org/10.23919/JSEE.2020.000010
Xiao S, Tan XS, Wang H, et al., 2015. Detection performance assessment of near-space hypersonic target based on ground-based radar. J Electron Inform Technol, 37(7):1723-1728(in Chinese). https://doi.org/10.11999/JEIT141024https://doi.org/10.11999/JEIT141024
Yang SC, Tian KS, Li HQ, et al., 2020. Comprehensive priority-based task scheduling algorithm for anti-missile early warning phased array radar. Acta Armam, 41(2):315-323(in Chinese). https://doi.org/10.3969/j.issn.1000-1093.2020.02.013https://doi.org/10.3969/j.issn.1000-1093.2020.02.013
Zhang HW, Xie JW, Shi JP, et al., 2017a. Dynamic priority online interleaving scheduling algorithm for the air defense phased array radar. Syst Eng Electron, 39(3):529-535(in Chinese). https://doi.org/10.3969/j.issn.1001-506X.2017.03.11https://doi.org/10.3969/j.issn.1001-506X.2017.03.11
Zhang HW, Xie JW, Zong BF, et al., 2017b. Dynamic priority scheduling method for the air-defence phased array radar. IET Radar Sonar Navig, 11(7):1140-1146. https://doi.org/10.1049/iet-rsn.2016.0549https://doi.org/10.1049/iet-rsn.2016.0549
Zhang HW, Xie JW, Lu WL, et al., 2017c. A scheduling method based on a hybrid genetic particle swarm algorithm for multifunction phased array radar. Front Inform Technol Electron Eng, 18(11):1806-1816. https://doi.org/10.1631/FITEE.1601358https://doi.org/10.1631/FITEE.1601358
Zhang HW, Xie JW, Shi JP, et al., 2018. Online interleaving scheduling algorithm over dynamic priority for the air defense phased array radar. Acta Electron Sin, 46(1):55- 60(in Chinese). https://doi.org/10.3969/j.issn.0372-2112.2018.01.008https://doi.org/10.3969/j.issn.0372-2112.2018.01.008
Zhang HW, Xie JW, Ge JA, et al., 2019. A hybrid adaptively genetic algorithm for task scheduling problem in the phased array radar. Eur J Oper Res, 272(3):868-878. https://doi.org/10.1016/j.ejor.2018.07.012https://doi.org/10.1016/j.ejor.2018.07.012
关联资源
相关文章
相关作者
相关机构