FOLLOWUS
1.State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou310027, China
2.Ji Hua Laboratory, Foshan528200, China
‡Corresponding author
纸质出版日期:2021-12-0 ,
收稿日期:2021-05-27,
修回日期:2021-12-09,
录用日期:2021-11-28
Scan QR Code
臧玉嘉, 陈燕虎, 杨灿军, 等. 一种面向恒流输电水下观测网的无级功率重构转换器[J]. 信息与电子工程前沿(英文), 2021,22(12):1625-1640.
YUJIA ZANG, YANHU CHEN, CANJUN YANG, et al. A stepless-power-reconfigurable converter for a constant current underwater observatory. [J]. Frontiers of information technology & electronic engineering, 2021, 22(12): 1625-1640.
臧玉嘉, 陈燕虎, 杨灿军, 等. 一种面向恒流输电水下观测网的无级功率重构转换器[J]. 信息与电子工程前沿(英文), 2021,22(12):1625-1640. DOI: 10.1631/FITEE.2100259.
YUJIA ZANG, YANHU CHEN, CANJUN YANG, et al. A stepless-power-reconfigurable converter for a constant current underwater observatory. [J]. Frontiers of information technology & electronic engineering, 2021, 22(12): 1625-1640. DOI: 10.1631/FITEE.2100259.
恒流(CC)电能到恒压(CV)电能的转换是恒流输电水下观测网的关键技术之一。该系统通常采用具有高稳定性和高可靠性的并联稳压器以稳定输出电压。然而,并联稳压方法存在高热损耗和低转换效率的缺点。本文对传统并联稳压方法进行改进,提出一种CC/CV转换模块的无级功率重构方法。针对稳定负载或缓慢变化负载的应用场景,介绍两种无级功率重构转换模式:(1)基于单环控制的手动无级功率重构(MSPR);(2)基于内—外环控制的自动无级功率重构(ASPR)。所述方法在保证系统留有预设功率裕度的同时,可以尽可能减少并联稳压方法中不必要的能量损失。分析了该方法的转换效率,讨论了系统关键参数选择方法。实验结果表明,MSPR和ASPR方法均保留了并联稳压方法的高稳定优点,同时降低了CC/CV转换模块的热耗散,提高了CC/CV转换效率。
The conversion from constant current (CC) to constant voltage (CV) is one of the key technologies of CC underwater observatory systems. A shunt regulator with high stability and high reliability is usually used. Applications
however
are limited by high heat dissipation and low efficiency. In this paper
with an improved shunt regulation method
a novel concept of stepless power reconfiguration (SPR) for the CC/CV module is proposed. In cases with stable or slowly changing load
two modes of CC/CV conversion are proposed to reduce unnecessary power loss of the shunt regulator while being able to retain any operator-preset power margin in the system: (1) the manual SPR (MSPR) method based on single-loop control method; (2) the automatic SPR (ASPR) method based on inner-outer loop control method. The efficiency of the system is analyzed. How to select some key parameters of the system is discussed. Experimental results show that MSPR and ASPR are both effective and practical methods to reduce heat dissipation and improve the efficiency of the CC/CV module
while the high stability of the shunt regulator remains.
恒流/恒压转换并联稳压器无级功率重构水下观测网
Constant current to constant voltage (CC/CV) conversionShunt regulatorStepless power configurationUnderwater observatory
K Asakawa, , J Kojima, , J Muramatsu, , et al., . 2003. . Novel current to current converter for mesh-like scientific underwater cable network―concept and preliminary test result. , OCEANS, p., 1868--1873. . doi: 10.1109/OCEANS.2003.178172http://doi.org/10.1109/OCEANS.2003.178172.
K Asakawa, , J Kojima, , J Muramatsu, , et al., . 2007. . Current-to-current converter for scientific underwater cable networks. . IEEE J Ocean Eng, , 32((3):):584--592. . doi: 10.1109/JOE.2007.905024http://doi.org/10.1109/JOE.2007.905024.
K Asakawa, , T Yokobiki, , TN Goto, , et al., . 2009. . New scientific underwater cable system Tokai-SCANNER for under-water geophysical monitoring utilizing a decommissioned optical underwater telecommunication cable. . IEEE J Ocean Eng, , 34((4):):539--547. . doi: 10.1109/JOE.2009.2026987http://doi.org/10.1109/JOE.2009.2026987.
R Butler, . 2003. . The Hawaii-2 Observatory: observation of nanoearthquakes. . Seismol Res Lett, , 74((3):):290--297. . doi: 10.1785/GSSRL.74.3.290http://doi.org/10.1785/GSSRL.74.3.290.
AD Chave, , G Waterworth, , AR Maffei, , et al., . 2004. . Cabled ocean observatory systems. . Mar Technol Soc J, , 38((2):):30--43. . doi: 10.4031/002533204787522785http://doi.org/10.4031/002533204787522785.
YH Chen, , CJ Yang, , DJ Li, , et al., . 2012. . Design and application of a junction box for cabled ocean observatories. . Mar Technol Soc J, , 46((3):):50--63. . doi: 10.4031/MTSJ.46.3.4http://doi.org/10.4031/MTSJ.46.3.4.
YH Chen, , BM Howe, , CJ Yang, . 2015. . Actively controllable switching for tree topology seafloor observation networks. . IEEE J Ocean Eng, , 40((4):):993--1002. . doi: 10.1109/JOE.2014.2362830http://doi.org/10.1109/JOE.2014.2362830.
YH Chen, , YJ Zang, , JJ Yao, , et al., . 2019a. . Optimal communication frequency for switching cabled ocean networks with commands carried over the power line. . Front Inform Technol Electron Eng, , 20((10):):1331--1343. . doi: 10.1631/FITEE.1900125http://doi.org/10.1631/FITEE.1900125.
YH Chen, , S Xiao, , DJ Li, . 2019b. . Power system design for constant current subsea observatories. . Front Inform Technol Electron Eng, , 20((11):):1505--1515. . doi: 10.1631/FITEE.1800362http://doi.org/10.1631/FITEE.1800362.
YH Chen, , YJ Zang, , CJ Yang, , et al., . 2020. . Reconfigurable power converter for constant current underwater obser-vatory. . Electronics, , 9((2):):307. doi: 10.3390/ELECTRONICS9020307http://doi.org/10.3390/ELECTRONICS9020307.
JK Choi, , S Nishida, , T Yokobiki, , et al., . 2013. . Development of an automated cable-laying system for DONET con-struction. . IEEE Int Underwater Technology Symp, p.. 1--6. . doi: 10.1109/UT.2013.6519810http://doi.org/10.1109/UT.2013.6519810.
DW Harris, , FK Duennebier, . 2002. . Powering cabled ocean-bottom observatories. . IEEE J Ocean Eng, , 27((2):):202--211. . doi: 10.1109/JOE.2002.1002474http://doi.org/10.1109/JOE.2002.1002474.
BM Howe, , H Kirkham, , V Vorpérian, . 2002. . Power system considerations for undersea observatories. . IEEE J Ocean Eng, , 27((2):):267--274. . doi: 10.1109/JOE.2002.1002481http://doi.org/10.1109/JOE.2002.1002481.
BM Howe, , R Lukas, , F Duennebier, , et al., . 2011. . ALOHA Cabled Observatory installation. , OCEANS, p., 1--11. . doi: 10.23919/OCEANS.2011.6107301http://doi.org/10.23919/OCEANS.2011.6107301.
BM Howe, , FK Duennebier, , R Lukas, . 2015. . The ALOHA Cabled Observatory. In: . P Favali, , L Beranzoli, , A de Santis (Eds.), . Seafloor Observatories. , Springer, , :Berlin, Germany, p.439--463. . doi: 10.1007/978-3-642-11374-1_17http://doi.org/10.1007/978-3-642-11374-1_17.
T Kanazawa, , M Shinohara, , S Sakai, , et al., . 2008. . A new compact ocean bottom cabled seismometers system for spatially dense observation on sea floor. , OCEANS, p., 1--5. . doi: 10.1109/OCEANS.2008.5152062http://doi.org/10.1109/OCEANS.2008.5152062.
T Kanazawa, , M Shinohara, , S Sakai, , et al., . 2011. . New innovative ocean bottom cabled seismometer system and observation in the Sea of Japan. . IEEE Symp on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies, p.. 1--3. . doi: 10.1109/UT.2011.5774112http://doi.org/10.1109/UT.2011.5774112.
K Kawaguchi, , Y Kaneda, , E Araki, . 2008. . The DONET: a real-time seafloor research infrastructure for the precise earthquake and tsunami monitoring. . OCEANS MTS/IEEE Kobe Techno-Ocean, p.. 1--4. . doi: 10.1109/OCEANSKOBE.2008.4530918http://doi.org/10.1109/OCEANSKOBE.2008.4530918.
K Kawaguchi, , E Araki, , Y Kogure, , et al., . 2013. . Development of DONET2—off Kii chanel observatory network. . IEEE Int Underwater Technology Symp, p.. 1--5. . doi: 10.1109/UT.2013.6519844http://doi.org/10.1109/UT.2013.6519844.
AB Khan, , VL Pham, , TT Nguyen, , et al., . 2016. . Multistage constant-current charging method for Li-ion batteries. . IEEE Transportation Electrification Conf and Expo, p.. 381--385. . doi: 10.1109/ITEC-AP.2016.7512982http://doi.org/10.1109/ITEC-AP.2016.7512982.
J Kojima, , BM Howe, , K Asakawa, , et al., . 2005. . Power systems for ocean regional cabled observatories. , OCEANS, p., 2176--2181. . doi: 10.1109/OCEANS.2004.1406484http://doi.org/10.1109/OCEANS.2004.1406484.
R Lin, , DJ Li, , T Zhang, , et al., . 2019. . A non-contact docking system for charging and recovering autonomous under-water vehicle. . J Mar Sci Technol, , 24((3):):902--916. . doi: 10.1007/s00773-018-0595-6http://doi.org/10.1007/s00773-018-0595-6..
RA Petitt, , DW Harris, , B Wooding, , et al., . 2002. . The Hawaii-2 Observatory. . IEEE J Ocean Eng, , 27((2):):245--253. . doi: 10.1109/JOE.2002.1002479http://doi.org/10.1109/JOE.2002.1002479.
FZ Qu, , ZD Wang, , H Song, , et al., . 2015. . A study on a cabled seafloor observatory. . IEEE Intell Syst, , 30((1):):66--69. . doi: 10.1109/MIS.2015.9http://doi.org/10.1109/MIS.2015.9.
T Saha, , HJ Wang, , B Riar, , et al., . 2018a. . Analysis and design of a parallel resonant converter for constant current input to constant voltage output DC-DC converter over wide load range. . Int Power Electronics Conf, p.. 4074--4079. . doi: 10.23919/IPEC.2018.8507404http://doi.org/10.23919/IPEC.2018.8507404.
T Saha, , AC Bagchi, , HJ Wang, , et al., . 2018b. . Analysis and design of wide range output voltage regulated power supply for underwater constant input current DC distribution system. . IEEE 19th Workshop on Control and Modeling for Power Electronics, p., 1--7. . doi: 10.1109/COMPEL.2018.8459939http://doi.org/10.1109/COMPEL.2018.8459939.
T Saha, , AC Bagchi, , RA Zane, . 2021. . Analysis and design of an LCL-T resonant DC-DC converter for underwater power supply. . IEEE Trans Power Electron, , 36((6):):6725--6737. . doi: 10.1109/TPEL.2020.3034298http://doi.org/10.1109/TPEL.2020.3034298.
HJ Wang, , T Saha, , R Zane, . 2017. . Impedance-based stability analysis and design considerations for DC current distribution with long transmission cable. . IEEE 18th Workshop on Control and Modeling for Power Electronics, p., 1--8. . doi: 10.1109/COMPEL.2017.8013355http://doi.org/10.1109/COMPEL.2017.8013355.
HJ Wang, , T Saha, , B Riar, , et al., . 2019. . Design considerations for current-regulated series-resonant converters with a constant input current. . IEEE Trans Power Electron, , 34((1):):141--150. . doi: 10.1109/TPEL.2018.2819887http://doi.org/10.1109/TPEL.2018.2819887.
J Wang, , DJ Li, , CJ Yang, , et al., . 2015. . Developing a power monitoring and protection system for the junction boxes of an experimental seafloor observatory network. . Front Inform Technol Electron Eng, , 16((12):):1034--1045. . doi: 10.1631/FITEE.1500099http://doi.org/10.1631/FITEE.1500099.
SO Yong, , NA Rahim, . 2013. . Development of on-off duty cycle control with zero computational algorithm for CC-CV Li ion battery charger. . IEEE Conf on Clean Energy and Technology, p.. 422--426. . doi: 10.1109/CEAT.2013.6775668http://doi.org/10.1109/CEAT.2013.6775668.
YJ Zang, , YH Chen, , CJ Yang, , et al., . 2020. . A new approach for analyzing the effect of non-ideal power supply on a constant current underwater cabled system. . Front Inform Technol Electron Eng, , 21((4):):604--614. . doi: 10.1631/FITEE.1800737http://doi.org/10.1631/FITEE.1800737.
SA Zapolskiy, , AV Osipov, , IM Zhuravlev, , et al., . 2018. . Single-cycle LCL-T resonant converter for solar battery. . XIV Int Scientific-Technical Conf on Actual Problems of Electronics Instrument Engineering, p.. 90--93. . doi: 10.1109/APEIE.2018.8545079http://doi.org/10.1109/APEIE.2018.8545079.
ZF Zhang, , YH Chen, , DJ Li, , et al., . 2018. . Use of a coded voltage signal for cable switching and fault isolation in cabled seafloor observatories. . Front Inform Technol Electron Eng, , 19((11):):1328--1339. . doi: 10.1631/FITEE.1601843http://doi.org/10.1631/FITEE.1601843.
关联资源
相关文章
相关作者
相关机构