FOLLOWUS
1.School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
2.Chinese Academy of Engineering, Beijng 100088, China
3.MOE Key Laboratory of Road and Traffic Engineering, Tongji University, Shanghai 200092, China
‡Corresponding authors
纸质出版日期:2022-11-0 ,
网络出版日期:2022-06-30,
收稿日期:2021-10-24,
录用日期:2022-03-14
Scan QR Code
胡展溢, 乔英俊, 李星宇, 等. 冲突场景下基于事件触发的多车协同控制与实验验证[J]. 信息与电子工程前沿(英文), 2022,23(11):1700-1713.
ZHANYI HU, YINGJUN QIAO, XINGYU LI, et al. Design and experimental validation of event-triggered multi-vehicle cooperation in conflicting scenarios. [J]. Frontiers of information technology & electronic engineering, 2022, 23(11): 1700-1713.
胡展溢, 乔英俊, 李星宇, 等. 冲突场景下基于事件触发的多车协同控制与实验验证[J]. 信息与电子工程前沿(英文), 2022,23(11):1700-1713. DOI: 10.1631/FITEE.2100504.
ZHANYI HU, YINGJUN QIAO, XINGYU LI, et al. Design and experimental validation of event-triggered multi-vehicle cooperation in conflicting scenarios. [J]. Frontiers of information technology & electronic engineering, 2022, 23(11): 1700-1713. DOI: 10.1631/FITEE.2100504.
队列系统在提高交通吞吐量和道路安全方面极具潜力,其被广泛用于高速公路上智能网联汽车的协同控制。受队列控制的启发,虚拟队列可以极大地简化冲突场景下智能网联多车系统的协同行驶。车车通信是虚拟队列系统的重要组成部分。在通信资源有限的情况下,大量数据传输必然会出现传输延迟、丢包等缺陷。因此,需要避免不必要的传输,从而建立一个可靠的无线网络。针对这一问题,本文提出一种基于事件触发的鲁棒控制方法,在保证时变不确定性条件下虚拟队列系统稳定性的同时,减少通信资源的利用。本文解析地证明了闭环系统的一致有界性、一致最终有界性和队列稳定性。本文所设计的触发条件考虑了边界信息的不确定性,使阈值估计更加合理。仿真和实验结果表明,该方法可以在多车协作的同时大大减少数据传输。阈值的选取影响跟踪能力和通信负担,其优化方法值得在今后的研究中探索。
Platoon control is widely studied for coordinating connected and automated vehicles (CAVs) on highways due to its potential for improving traffic throughput and road safety. Inspired by platoon control
the cooperation of multiple CAVs in conflicting scenarios can be greatly simplified by virtual platooning. Vehicle-to-vehicle communication is an essential ingredient in virtual platoon systems. Massive data transmission with limited communication resPreprintources incurs inevitable imperfections such as transmission delay and dropped packets. As a result
unnecessary transmission needs to be avoided to establish a reliable wireless network. To this end
an event-triggered robust control method is developed to reduce the use of communication resources while ensuring the stability of the virtual platoon system with time-varying uncertainty. The uniform boundedness
uniform ultimate boundedness
and string stability of the closed-loop system are analytically proved. As for the triggering condition
the uncertainty of the boundary information is considered
so that the threshold can be estimated more reasonably. Simulation and experimental results verify that the proposed method can greatly reduce data transmission while creating multi-vehicle cooperation. The threshold affects the tracking ability and communication burden
and hence an optimization framework for choosing the threshold is worth exploring in future research.
智能网联汽车事件触发控制非线性不确定性动力学冲突区域
Connected and automated vehiclesEvent-triggered controlNonlinear and uncertain dynamicsConflicting scenarios
Bian YG, Li SE, Ren W, et al., 2020. Cooperation of multiple connected vehicles at unsignalized intersections: distributed observation, optimization, and control. IEEE Trans Ind Electron, 67(12):10744-10754. doi: 10.1109/TIE.2019.2960757https://doi.org/10.1109/TIE.2019.2960757
Castiglione LM, Falcone P, Petrillo A, et al., 2021. Cooperative intersection crossing over 5G. IEEE/ACM Trans Netw, 29(1):303-317. doi: 10.1109/TNET.2020.3032652https://doi.org/10.1109/TNET.2020.3032652
Chen YH, Zhang XR, 2010. Adaptive robust approximate constraint-following control for mechanical systems. J Franklin Inst, 347(1):69-86. doi: 10.1016/j.jfranklin.2009.10.012https://doi.org/10.1016/j.jfranklin.2009.10.012
Dai PL, Liu K, Zhuge QF, et al., 2016. Quality-of-experience-oriented autonomous intersection control in vehicular networks. IEEE Trans Intell Transp Syst, 17(7):1956-1967. doi: 10.1109/TITS.2016.2514271https://doi.org/10.1109/TITS.2016.2514271
di Bernardo M, Salvi A, Santini S, 2015. Distributed consensus strategy for platooning of vehicles in the presence of time-varying heterogeneous communication delays. IEEE Trans Intell Transp Syst, 16(1):102-112. doi: 10.1109/TITS.2014.2328439https://doi.org/10.1109/TITS.2014.2328439
Ding L, Han QL, Ge XH, et al., 2018. An overview of recent advances in event-triggered consensus of multiagent systems. IEEE Trans Cybern, 48(4):1110-1123. doi: 10.1109/TCYB.2017.2771560https://doi.org/10.1109/TCYB.2017.2771560
di Vaio MD, Falcone P, Hult R, et al., 2019. Design and experimental validation of a distributed interaction protocol for connected autonomous vehicles at a road intersection. IEEE Trans Veh Technol, 68(10):9451-9465. doi: 10.1109/TVT.2019.2933690https://doi.org/10.1109/TVT.2019.2933690
Dolk V, Heemels M, 2017. Event-triggered control systems under packet losses. Automatica, 80:143-155. doi: 10.1016/j.automatica.2017.02.029https://doi.org/10.1016/j.automatica.2017.02.029
Dolk VS, Ploeg J, Heemels MPMH, 2017. Event-triggered control for string-stable vehicle platooning. IEEE Trans Intell Transp Syst, 18(12):3486-3500. doi: 10.1109/TITS.2017.2738446https://doi.org/10.1109/TITS.2017.2738446
Dresner K, Stone P, 2008. A multiagent approach to autonomous intersection management. J Artif Intell Res, 31(1):591-656. doi: 10.5555/1622655.1622672https://doi.org/10.5555/1622655.1622672
Ge XH, Han QL, Zhang XM, 2018. Achieving cluster formation of multi-agent systems under aperiodic sampling and communication delays. IEEE Trans Ind Electron, 65(4):3417-3426. doi: 10.1109/TIE.2017.2752148https://doi.org/10.1109/TIE.2017.2752148
Guo G, Ding L, Han QL, 2014. A distributed event-triggered transmission strategy for sampled-data consensus of multi-agent systems. Automatica, 50(5):1489-1496. doi: 10.1016/j.automatica.2014.03.017https://doi.org/10.1016/j.automatica.2014.03.017
Huang S, Sadek AW, Zhao YJ, 2012. Assessing the mobility and environmental benefits of reservation-based intelligent intersections using an integrated simulator. IEEE Trans Intell Transp Syst, 13(3):1201-1214. doi: 10.1109/TITS.2012.2186442https://doi.org/10.1109/TITS.2012.2186442
Li SE, Zheng Y, Li KQ, et al., 2017. Dynamical modeling and distributed control of connected and automated vehicles: challenges and opportunities. IEEE Trans Intell Transp Syst, 9(3):46-58. doi: 10.1109/MITS.2017.2709781https://doi.org/10.1109/MITS.2017.2709781
Li T, Wen CY, Yang J, et al., 2020. Event-triggered tracking control for nonlinear systems subject to time-varying external disturbances. Automatica, 119:109070. doi: 10.1016/j.automatica.2020.109070https://doi.org/10.1016/j.automatica.2020.109070
Li W, Ban XG, 2020. Connected vehicle-based traffic signal coordination. Engineering, 6(12):1463-1472. doi: 10.1016/j.eng.2020.10.009https://doi.org/10.1016/j.eng.2020.10.009
Meng Y, Li L, Wang FY, et al., 2018. Analysis of cooperative driving strategies for nonsignalized intersections. IEEE Trans Veh Technol, 67(4):2900-2911. doi: 10.1109/TVT.2017.2780269https://doi.org/10.1109/TVT.2017.2780269
Mirheli A, Tajalli M, Hajibabai L, et al., 2019. A consensus-based distributed trajectory control in a signal-free intersection. Transp Res Part C Emerg Technol, 100:161-176. doi: 10.1016/j.trc.2019.01.004https://doi.org/10.1016/j.trc.2019.01.004
Morales Medina AI, van de Wouw N, Nijmeijer H, 2018. Cooperative intersection control based on virtual platooning. IEEE Trans Intell Transp Syst, 19(6):1727-1740. doi: 10.1109/TITS.2017.2735628https://doi.org/10.1109/TITS.2017.2735628
Rios-Torres J, Malikopoulos AA, 2017. A survey on the coordination of connected and automated vehicles at intersections and merging at highway on-ramps. IEEE Trans Intell Transp Syst, 18(5):1066-1077. doi: 10.1109/TITS.2016.2600504https://doi.org/10.1109/TITS.2016.2600504
Shen H, Wang Y, Xia JW, et al., 2019. Fault-tolerant leader-following consensus for multi-agent systems subject to semi-Markov switching topologies: an event-triggered control scheme. Nonl Anal Hybr Syst, 34:92-107. doi: 10.1016/j.nahs.2019.05.003https://doi.org/10.1016/j.nahs.2019.05.003
Shi YJ, Han QM, Shen WM, et al., 2021. A multi-layer collaboration framework for industrial parks with 5G vehicle-to-everything networks. Engineering, 7(6):818-831. doi: 10.1016/j.eng.2020.12.021https://doi.org/10.1016/j.eng.2020.12.021
Uno A, Sakaguchi T, Tsugawa S, 1999. A merging control algorithm based on inter-vehicle communication. Proc IEEE/IEEJ/JSAI Int Conf on Intelligent Transportation Systems, p.783-787. doi: 10.1109/ITSC.1999.821160https://doi.org/10.1109/ITSC.1999.821160
Wen SX, Guo G, Chen B, et al., 2018. Event-triggered cooperative control of vehicle platoons in vehicular ad hoc networks. Inform Sci, 459:341-353. doi: 10.1016/j.ins.2018.02.051https://doi.org/10.1016/j.ins.2018.02.051
Xu B, Li SE, Bian YG, et al., 2018. Distributed conflict-free cooperation for multiple connected vehicles at unsignalized intersections. Transp Res Part C Emerg Technol, 93:322-334. doi: 10.1016/j.trc.2018.06.004https://doi.org/10.1016/j.trc.2018.06.004
Yu RR, Chen YH, Zhao H, et al., 2019. Self-adjusting leakage type adaptive robust control design for uncertain systems with unknown bound. Mech Syst Signal Process, 116:173-193. doi: 10.1016/j.ymssp.2018.06.031https://doi.org/10.1016/j.ymssp.2018.06.031
Yue W, Wang LY, Guo G, 2017. Event-triggered platoon control of vehicles with time-varying delay and probabilistic faults. Mech Syst Signal Process, 87:96-117. doi: 10.1016/j.ymssp.2016.09.042https://doi.org/10.1016/j.ymssp.2016.09.042
Zheng Y, Li SE, Wang JQ, et al., 2016. Stability and scalability of homogeneous vehicular platoon: study on the influence of information flow topologies. IEEE Trans Intell Transp Syst, 17(1):14-26. doi: 10.1109/TITS.2015.2402153https://doi.org/10.1109/TITS.2015.2402153
关联资源
相关文章
相关作者
相关机构