FOLLOWUS
1.National Mobile Communications Research Laboratory, Department of Radio Engineering, School of Information Science and Engineering, Southeast University, Nanjing210096, China
2.Purple Mountain Laboratories, Nanjing211111, China
3.Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing210093, China
‡Corresponding author
纸质出版日期:2021-12-0 ,
收稿日期:2021-11-10,
修回日期:2021-12-07,
录用日期:2021-11-30
Scan QR Code
李连鸣, 何龙, 吴旭, 等. 用于超导纳米线单光子探测器的宽带超低温放大器[J]. 信息与电子工程前沿(英文), 2021,22(12):1666-1676.
LIANMING LI, LONG HE, XU WU, et al. Wideband cryogenic amplifier for a superconductingnanowire single-photon detector. [J]. Frontiers of information technology & electronic engineering, 2021, 22(12): 1666-1676.
李连鸣, 何龙, 吴旭, 等. 用于超导纳米线单光子探测器的宽带超低温放大器[J]. 信息与电子工程前沿(英文), 2021,22(12):1666-1676. DOI: 10.1631/FITEE.2100525.
LIANMING LI, LONG HE, XU WU, et al. Wideband cryogenic amplifier for a superconductingnanowire single-photon detector. [J]. Frontiers of information technology & electronic engineering, 2021, 22(12): 1666-1676. DOI: 10.1631/FITEE.2100525.
为有效读出超导纳米线单光子探测器(SNSPD)输出信号,提出一种基于0.13 μm SiGe BiCMOS工艺的低功耗无电感宽带差分超低温放大器。为解决缺少超低温器件精确模型的问题,结合并联—并联反馈和电容耦合超低温放大器结构,通过详细理论分析和仿真,确定了放大器增益与电路可调设计参数间的关系,提高了设计和优化的灵活性,从而实现所需增益。为实现工作频率范围内端口阻抗平坦特性,采用RC并联补偿结构,有效提高了放大器闭环稳定性,并可抑制放大器过冲问题。给出室温(300 K)和低温(4.2 K)下
S
参数和瞬态性能测试结果。在良好输入输出阻抗匹配下,该放大器在300 K温度下3 dB带宽为1.13 GHz,增益为21 dB。在4.2 K温度下,该放大器增益可在15~24 dB范围内调节,其3 dB带宽为120 kHz~1.3 GHz,功耗仅3.1 mW。去除芯片外围焊盘,该超低温放大器芯片核心面积仅为0.073 mm
2
。
We present a low-power inductorless wideband differential cryogenic amplifier using a 0.13-μm SiGe BiCMOS process for a superconducting nanowire single-photon detector (SNSPD). With a shunt–shunt feedback and capacitive coupling structure
theoretical analysis and simulations were undertaken
highlighting the relationship of the amplifier gain with the tunable design parameters of the circuit. In this way
the design and optimization flexibility can be increased
and a required gain can be achieved even without an accurate cryogenic device model. To realize a flat terminal impedance over the frequency of interest
an RC shunt compensation structure was employed
improving the amplifier’s closed-loop stability and suppressing the amplifier overshoot. The S-parameters and transient performance were measured at room temperature (300 K) and cryogenic temperature (4.2 K). With good input and output matching
the measurement results showed that the amplifier achieved a 21-dB gain with a 3-dB bandwidth of 1.13 GHz at 300 K. At 4.2 K
the gain of the amplifier can be tuned from 15 to 24 dB
achieving a 3-dB bandwidth spanning from 120 kHz to 1.3 GHz and consuming only 3.1 mW. Excluding the chip pads
the amplifier chip core area was only about 0.073 mm
2
.
超低温放大器宽带放大器超导纳米线单光子探测器
Cryogenic amplifierWideband amplifierSuperconducting nanowire single-photon detector (SNSPD)
JC Bardin, , S Weinreb, . 2008. . Experimental cryogenic modeling and noise of SiGe HBTs. . Proc IEEE MTT-S Int Microwave Symp Digest, p.. 459--462. . doi: 10.1109/MWSYM.2008.4633202http://doi.org/10.1109/MWSYM.2008.4633202.
JC Bardin, , S Weinreb, . 2009. . A 0.1–5 GHz cryogenic SiGe MMIC LNA. . IEEE Microw Wirel Compon Lett, , 19((6):):407--409. . doi: 10.1109/LMWC.2009.2020041http://doi.org/10.1109/LMWC.2009.2020041.
JC Bardin, , S Weinreb, . 2010. . A DC-4 GHz 270Ω differential SiGe low-noise amplifier for cryogenic applications. . Proc 5th European Microwave Integrated Circuits, p., 186--189. ..
K Birnbaum, , JR Charles, , WH Farr, , et al., . 2011. . Deep-space optical terminals: ground laser receiver. . Proc Int Conf on Space Optical Systems and Applications, p.. 136--141. . doi: 10.1109/ICSOS.2011.5783657http://doi.org/10.1109/ICSOS.2011.5783657.
CT Cahall, , DJ Gauthier, , J Kim, . 2016. . Cryogenic amplifiers for a superconducting nanowire single photon detector system. . Proc Conf on Lasers and Electro-Optics, p.. 1--2. ..
E Cha, , N Wadefalk, , G Moschetti, , et al., . 2020. . InP HEMTs for sub-mW cryogenic low-noise amplifiers. . IEEE Electron Dev Lett, , 41((7):):1005--1008. . doi: 10.1109/LED.2020.3000071http://doi.org/10.1109/LED.2020.3000071.
SW Chang, , JC Bardin, . 2017. . A wideband cryogenic SiGe LNA MMIC with an average noise temperature of 2.8 K from 0.3–3 GHz. . Proc IEEE MTT-S Int Microwave Symp, p.. 157--159. . doi: 10.1109/MWSYM.2017.8058926http://doi.org/10.1109/MWSYM.2017.8058926.
B Debnath, , JC Das, , D De, . 2019. . Nanoscale cryptographic architecture design using quantum-dot cellular automata. . Front Inform Technol Electron Eng, , 20((11):):1578--1586. . doi: 10.1631/FITEE.1800458http://doi.org/10.1631/FITEE.1800458.
L He, , LM Li, , XK Niu, , et al., . 2019. . A low-power, inductorless wideband cryogenic amplifier for superconducting nanowire single photon detector. . IEEE Trans Appl Supercond, , 29((6):):2200306. doi: 10.1109/TASC.2018.2890700http://doi.org/10.1109/TASC.2018.2890700.
J Kitaygorsky, , W Slysz, , R Shouten, , et al., . 2017. . Amplitude distributions of dark counts and photon counts in NbN superconducting single-photon detectors integrated with the HEMT readout. . Phys C Supercond Appl, , 532:33--39. . doi: 10.1016/j.physc.2016.11.008http://doi.org/10.1016/j.physc.2016.11.008.
AM Korolev, , VM Shulga, , OG Turutanov, . 2016. . An ultra-low- power multi-octave deep-cooled amplifier for superconducting single-photon detectors. . Proc 9th Int Kharkiv Symp on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, p., 1--3. . doi: 10.1109/MSMW.2016.7538034http://doi.org/10.1109/MSMW.2016.7538034.
MM Liu, , J Krämer, , YP Hu, , et al., . 2017. . Quantum security analysis of a lattice-based oblivious transfer protocol. . Front Inform Technol Electron Eng, , 18((9):):1348--1369. . doi: 10.1631/FITEE.1700039http://doi.org/10.1631/FITEE.1700039.
F Marsili, , VB Verma, , JA Stern, , et al., . 2013. . Detecting single infrared photons with 93% system efficiency. . Nat Photon, , 7((3):):210--214. . doi: 10.1038/nphoton.2013.13http://doi.org/10.1038/nphoton.2013.13.
S Montazeri, , WT Wong, , AH Coskun, , et al., . 2016. . Ultra-low- power cryogenic SiGe low-noise amplifiers: theory and demonstration. . IEEE Trans Microw Theory Techn, , 64((1):):178--187. . doi: 10.1109/TMTT.2015.2497685http://doi.org/10.1109/TMTT.2015.2497685.
G Moschetti, , N Wadefalk, , PÅ Nilsson, , et al., . 2012. . Cryogenic InAs/AlSb HEMT wideband low-noise IF amplifier for ultra-low-power applications. . IEEE Microw Wirel Compon Lett, , 22((3):):144--146. . doi: 10.1109/LMWC.2011.2182637http://doi.org/10.1109/LMWC.2011.2182637.
SQ Qu, , XC Wang, , C Zhang, , et al., . 2019. . 6-7 GHz cryogenic low-noise mHEMT-based amplifier for quantum computing. . Proc Cross Strait Quad-Regional Radio Science and Wireless Technology Conf, p.. 1--3. . doi: 10.1109/CSQRWC.2019.8799182http://doi.org/10.1109/CSQRWC.2019.8799182.
W Ramírez, , H Forstén, , M Varonen, , et al., . 2019. . Cryogenic operation of a millimeter-wave SiGe BiCMOS low-noise amplifier. . IEEE Microw Wirel Compon Lett, , 29((6):):403--405. . doi: 10.1109/LMWC.2019.2911919http://doi.org/10.1109/LMWC.2019.2911919.
D Russell, , S Weinreb, . 2012. . Low-power very low-noise cryogenic SiGe IF amplifiers for terahertz mixer receivers. . IEEE Trans Microw Theory Techn, , 60((6):):1641--1648. . doi: 10.1109/TMTT.2012.2190744http://doi.org/10.1109/TMTT.2012.2190744.
J Schleeh, , N Wadefalk, , PÅ Nilsson, , et al., . 2013. . Cryogenic broadband ultra-low-noise MMIC LNAs for radio astronomy applications. . IEEE Trans Microw Theory Techn, , 61((2):):871--877. . doi: 10.1109/TMTT.2012.2235856http://doi.org/10.1109/TMTT.2012.2235856.
YSJ Shiao, , GW Huang, , TH Chiueh, . 2014. . A 4 GHz cryogenic amplifier in 0.18 μm general purpose BiCMOS technology. . Proc Asia-Pacific Microwave Conf, p.. 1181--1183. ..
SHI Cryogenics Group, . 2012. . RDK-415D 4K Cryocooler Series. . https://www.shicryogenics.com/product/rdk-415d-4k-cryocooler-series/https://www.shicryogenics.com/product/rdk-415d-4k-cryocooler-series/ [Accessed on , Nov. 10, 2021. ]..
X Tao, , H Hao, , X Li, , et al., . 2020. . Characterize the speed of a photon-number-resolving superconducting nanowire detector. . IEEE Photon J, , 12((4):):4501308. doi: 10.1109/JPHOT.2020.3012349http://doi.org/10.1109/JPHOT.2020.3012349.
M Tarkhov, , J Claudon, , JP Poizat, , et al., . 2008. . Ultrafast reset time of superconducting single photon detectors. . Appl Phys Lett, , 92((24):):241112. doi: 10.1063/1.2945277http://doi.org/10.1063/1.2945277.
WT Wong, , M Hosseini, , H Rücker, , et al., . 2020. . A 1 mW cryogenic LNA exploiting optimized SiGe HBTs to achieve an average noise temperature of 3.2 K from 4–8 GHz. . Proc IEEE/MTT-S Int Microwave Symp, p.. 181--184. . doi: 10.1109/IMS30576.2020.9224049http://doi.org/10.1109/IMS30576.2020.9224049.
T Yamashita, , S Miki, , W Qiu, , et al., . 2010. . Temperature dependent performances of superconducting nanowire single-photon detectors in an ultralow-temperature region. . Appl Phys Expr, , 3((10):):102502. doi: 10.1143/APEX.3.102502http://doi.org/10.1143/APEX.3.102502.
关联资源
相关文章
相关作者
相关机构