FOLLOWUS
Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi 214122, China
‡Corresponding author
纸质出版日期:2022-11-0 ,
网络出版日期:2022-04-23,
收稿日期:2021-11-29,
录用日期:2021-12-21
Scan QR Code
刘智倩, 楼旭阳, 贾佳佳. 一类Lipschitz非线性系统的事件触发动态输出反馈控制[J]. 信息与电子工程前沿(英文), 2022,23(11):1684-1699.
ZHIQIAN LIU, XUYANG LOU, JIAJIA JIA. Event-triggered dynamic output-feedback control for a class of Lipschitz nonlinear systems. [J]. Frontiers of information technology & electronic engineering, 2022, 23(11): 1684-1699.
刘智倩, 楼旭阳, 贾佳佳. 一类Lipschitz非线性系统的事件触发动态输出反馈控制[J]. 信息与电子工程前沿(英文), 2022,23(11):1684-1699. DOI: 10.1631/FITEE.2100552.
ZHIQIAN LIU, XUYANG LOU, JIAJIA JIA. Event-triggered dynamic output-feedback control for a class of Lipschitz nonlinear systems. [J]. Frontiers of information technology & electronic engineering, 2022, 23(11): 1684-1699. DOI: 10.1631/FITEE.2100552.
本文研究一类Lipschitz非线性系统的动态输出反馈控制问题。首先,针对该系统设计了一个连续时间控制器,并且给出了系统稳定的充分条件。其次,针对该Lipschitz非线性系统提出一种新的事件触发机制,在该触发机制中引入了新的事件触发条件,并构建了事件触发控制下的闭环混杂系统。在混杂系统框架下建立了闭环系统稳定的充分条件。此外,给出了最小事件间隔的上界,以避免Zeno现象。最后,通过在神经网络系统和基因调控网络系统中的数值仿真验证了理论结果及所提方法的优越性。
This paper investigates the problem of dynamic output-feedback control for a class of Lipschitz nonlinear systems. First
a continuous-time controller is constructed and sufficient conditions for stability of the nonlinear systems are presented. Then
a novel event-triggered mechanism is proposed for the Lipschitz nonlinear systems in which new event-triggered conditions are introduced. Consequently
a closed-loop hybrid system is obtained using the event-triggered control strategy. Sufficient conditions for stability of the closed-loop system are established in the framework of hybrid systems. In addition
an upper bound of a minimum inter-event interval is provided to avoid the Zeno phenomenon. Finally
numerical examples of a neural network system and a genetic regulatory network system are provided to verify the theoretical results and to show the superiority of the proposed method.
Lipschitz非线性系统动态输出反馈控制事件触发控制全局渐近稳定
Lipschitz nonlinear systemDynamic output-feedback controlEvent-triggered controlGlobal asymptotic stability
Abdelrahim M, Postoyan R, Daafouz J, et al., 2016. Stabilization of nonlinear systems using event-triggered output feedback controllers. IEEE Trans Automat Contr, 61(9):2682-2687. doi: 10.1109/tac.2015.2502145http://doi.org/10.1109/tac.2015.2502145
Andrieu V, Praly L, 2009. A unifying point of view on output feedback designs for global asymptotic stabilization. Automatica, 45(8):1789-1798. doi: 10.1016/j.automatica.2009.04.015http://doi.org/10.1016/j.automatica.2009.04.015
Angulo MT, Moog CH, Liu YY, 2019. A theoretical framework for controlling complex microbial communities. Nat Commun, 10(1):1045. doi: 10.1038/s41467-019-08890-yhttp://doi.org/10.1038/s41467-019-08890-y
Casey R, de Jong H, Gouzé JL, 2006. Piecewise-linear models of genetic regulatory networks: equilibria and their stability. J Math Biol, 52(1):27-56. doi: 10.1007/s00285-005-0338-2http://doi.org/10.1007/s00285-005-0338-2
Chen J, Chen BM, Sun J, 2019. Complex system and intelligent control: theories and applications. Front Inform Technol Electron Eng, 20(1):1-3. doi: 10.1631/FITEE.1910000http://doi.org/10.1631/FITEE.1910000
Chen PN, Cheng DZ, Jiang ZP, 2006. A constructive approach to local stabilization of nonlinear systems by dynamic output feedback. IEEE Trans Automat Contr, 51(7):1166-1171. doi: 10.1109/tac.2006.878753http://doi.org/10.1109/tac.2006.878753
Collins EG, Selekwa MAF, Walker RB, et al., 2006. A stacked model structure for off-line parameter variation estimation in multi-equilibria nonlinear systems. Eur J Contr, 12(4):353-364. doi: 10.3166/ejc.12.353-364http://doi.org/10.3166/ejc.12.353-364
Dong JX, Yang GH, 2008. Dynamic output feedback control synthesis for continuous-time T-S fuzzy systems via a switched fuzzy control scheme. IEEE Trans Syst Man Cybern B Cybern, 38(4):1166-1175. doi: 10.1109/tsmcb.2008.923530http://doi.org/10.1109/tsmcb.2008.923530
Donkers MCF, Heemels WPMH, 2012. Output-based event-triggered control with guaranteed <math id="M569"><mrow><msub><mi mathvariant="script">L</mi><mi>∞</mi></msub></mrow></math>-gain and improved and decentralized event-triggering. IEEE Trans Automat Contr, 57(6):1362-1376. doi: 10.1109/tac.2011.2174696http://doi.org/10.1109/tac.2011.2174696
Ekramian M, 2020. Static output feedback problem for Lipschitz nonlinear systems. J Franklin Inst, 357(3):1457-1472. doi: 10.1016/j.jfranklin.2019.10.031http://doi.org/10.1016/j.jfranklin.2019.10.031
Goebel R, Sanfelice RG, Teel AR, 2012. Hybrid Dynamical Systems: Modeling, Stability, and Robustness. Princeton University Press, Princeton, USA.
Gu Z, Huan Z, Yue D, et al., 2018. Event-triggered dynamic output feedback control for networked control systems with probabilistic nonlinearities. Inform Sci, 457-458:99-112. doi: 10.1016/j.ins.2018.05.007http://doi.org/10.1016/j.ins.2018.05.007
Hamid SR, Nazir MS, Rehan M, et al., 2019. New results on regional observer-based stabilization for locally Lipschitz nonlinear systems. Chaos Solit Fract, 123:173-184. doi: 10.1016/j.chaos.2019.04.004http://doi.org/10.1016/j.chaos.2019.04.004
Kammogne AST, Kountchou MN, Kengne R, et al., 2020. Polynomial robust observer implementation based passive synchronization of nonlinear fractional-order systems with structural disturbances. Front Inform Technol Electron Eng, 21(9):1369-1386. doi: 10.1631/FITEE.1900430http://doi.org/10.1631/FITEE.1900430
Khalil HK, 2014. Nonlinear Control, Global Edition. Pearson Education, USA.
Li FF, Sun JT, 2010. Asymptotic stability of a genetic network under impulsive control. Phys Lett A, 374(31-32):3177-3184. doi: 10.1016/j.physleta.2010.05.054http://doi.org/10.1016/j.physleta.2010.05.054
Liu S, Song Y, Wei GL, et al., 2017. Event-triggered dynamic output feedback RMPC for polytopic systems with redundant channels: input-to-state stability. J Franklin Inst, 354(7):2871-2892. doi: 10.1016/j.jfranklin.2017.02.008http://doi.org/10.1016/j.jfranklin.2017.02.008
Liu W, Wang ZM, Dai HH, et al., 2016. Dynamic output feedback control for fast sampling discrete-time singularly perturbed systems. IET Contr Theory Appl, 10(15):1782-1788. doi: 10.1049/iet-cta.2016.0121http://doi.org/10.1049/iet-cta.2016.0121
Meslem N, Prieur C, 2015. Event-based controller synthesis by bounding methods. Eur J Contr, 26:12-21. doi: 10.1016/j.ejcon.2015.09.004http://doi.org/10.1016/j.ejcon.2015.09.004
Molaei B, 2008. Optimization of dynamic output feedback controller for piecewise affine systems: an LMI approach. J Circ Syst Comput, 17(2):263-277. doi: 10.1142/s021812660800423xhttp://doi.org/10.1142/s021812660800423x
Nesic D, Teel AR, Carnevale D, 2009. Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems. IEEE Trans Automat Contr, 54(3):619-624. doi: 10.1109/tac.2008.2009597http://doi.org/10.1109/tac.2008.2009597
Park JH, 2005. On design of dynamic output feedback controller for GCS of large-scale systems with delays in interconnections: LMI optimization approach. Appl Math Comput, 161(2):423-432. doi: 10.1016/j.amc.2003.12.037http://doi.org/10.1016/j.amc.2003.12.037
Peng C, Yang TC, 2013. Event-triggered communication and <math id="M570"><mrow><msub><mi mathvariant="script">H</mi><mi>∞</mi></msub></mrow></math> control co-design for networked control systems. Automatica, 49(5):1326-1332. doi: 10.1016/j.automatica.2013.01.038http://doi.org/10.1016/j.automatica.2013.01.038
Pertew AM, Marquez HJ, Zhao Q, 2006. <math id="M571"><mrow><msub><mi mathvariant="script">H</mi><mi>∞</mi></msub></mrow></math> observer design for Lipschitz nonlinear systems. IEEE Trans Automat Contr, 51(7):1211-1216. doi: 10.1109/tac.2006.878784http://doi.org/10.1109/tac.2006.878784
Pham TP, Sename O, Dugard L, 2019. Unified <math id="M572"><mrow><msub><mi mathvariant="script">H</mi><mi>∞</mi></msub></mrow></math> observer for a class of nonlinear Lipschitz systems: application to a real ER automotive suspension. IEEE Contr Syst Lett, 3(4):817-822. doi: 10.1109/lcsys.2019.2919813http://doi.org/10.1109/lcsys.2019.2919813
Qian CJ, Lin W, 2001. A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans Automat Contr, 46(7):1061-1079. doi: 10.1109/9.935058http://doi.org/10.1109/9.935058
Qiu JL, 2007. Exponential stability of impulsive neural networks with time-varying delays and reaction–diffusion terms. Neurocomputing, 70(4-6):1102-1108. doi: 10.1016/j.neucom.2006.08.003http://doi.org/10.1016/j.neucom.2006.08.003
Rehan M, Jameel A, Ahn CK, 2018. Distributed consensus control of one-sided Lipschitz nonlinear multiagent systems. IEEE Trans Syst Man Cybern Syst, 48(8):1297-1308. doi: 10.1109/tsmc.2017.2667701http://doi.org/10.1109/tsmc.2017.2667701
Sanchez EN, Perez JP, 2003. Input-to-state stabilization of dynamic neural networks. IEEE Trans Syst Man Cybern A Syst Hum, 33(4):532-535. doi: 10.1109/tsmca.2003.811509http://doi.org/10.1109/tsmca.2003.811509
Shu F, Zhai JY, 2020. Event-triggered practical finite-time output feedback stabilisation for switched non-linear time-delay systems. IET Contr Theory Appl, 14(6):824-833. doi: 10.1049/iet-cta.2019.1093http://doi.org/10.1049/iet-cta.2019.1093
Tabuada P, 2007. Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans Automat Contr, 52(9):1680-1685. doi: 10.1109/tac.2007.904277http://doi.org/10.1109/tac.2007.904277
Theodosis D, Dimarogonas DV, 2019. Event-triggered control of nonlinear systems with updating threshold. IEEE Contr Syst Lett, 3(3):655-660. doi: 10.1109/lcsys.2019.2915719http://doi.org/10.1109/lcsys.2019.2915719
Wang ZD, Qiao H, Burnham KJ, 2002. On stabilization of bilinear uncertain time-delay stochastic systems with Markovian jumping parameters. IEEE Trans Automat Contr, 47(4):640-646. doi: 10.1109/9.995042http://doi.org/10.1109/9.995042
Yu H, Antsaklis PJ, 2013. Event-triggered output feedback control for networked control systems using passivity: achieving <math id="M573"><mrow><msub><mi mathvariant="script">L</mi><mn>2</mn></msub></mrow></math> stability in the presence of communication delays and signal quantization. Automatica, 49(1):30-38. doi: 10.1016/j.automatica.2012.09.005http://doi.org/10.1016/j.automatica.2012.09.005
Zhang JH, Feng G, 2014. Event-driven observer-based output feedback control for linear systems. Automatica, 50(7):1852-1859. doi: 10.1016/j.automatica.2014.04.026http://doi.org/10.1016/j.automatica.2014.04.026
Zhang XM, Han QL, 2016. A decentralized event-triggered dissipative control scheme for systems with multiple sensors to sample the system outputs. IEEE Trans Cybern, 46(12):2745-2757. doi: 10.1109/TCYB.2015.2487420http://doi.org/10.1109/TCYB.2015.2487420
Zhang XM, Han QL, 2017. Event-triggered <math id="M574"><mrow><msub><mi mathvariant="script">H</mi><mi>∞</mi></msub></mrow></math> control for a class of nonlinear networked control systems using novel integral inequalities. Int J Robust Nonl Contr, 27(4):679-700. doi: 10.1002/rnc.3598http://doi.org/10.1002/rnc.3598
Zhang Z, Li HP, Shi Y, et al., 2020. Cooperative optimal control for Lipschitz nonlinear systems over generally directed topologies. Automatica, 122:109279. doi: 10.1016/j.automatica.2020.109279http://doi.org/10.1016/j.automatica.2020.109279
Zhou J, Wen CY, Li TS, 2012. Adaptive output feedback control of uncertain nonlinear systems with hysteresis nonlinearity. IEEE Trans Automat Contr, 57(10):2627-2633. doi: 10.1109/tac.2012.2190208http://doi.org/10.1109/tac.2012.2190208
Zuo ZY, Lin ZL, Ding ZT, 2016. Truncated prediction output feedback control of a class of Lipschitz nonlinear systems with input delay. IEEE Trans Circ Syst II Expr Briefs, 63(8):788-792. doi: 10.1109/tcsii.2016.2531053http://doi.org/10.1109/tcsii.2016.2531053
关联资源
相关文章
相关作者
相关机构