FOLLOWUS
1.The State Key Lab of CAD & CG, Zhejiang University, Hangzhou310058, China
2.School of Computer Science and Technology, Shandong University, Jinan250100, China
‡Corresponding author
纸质出版日期:2021-12-0 ,
收稿日期:2021-11-29,
修回日期:2021-12-10,
录用日期:2021-12-10
Scan QR Code
陈为, 张天野, 朱海洋, 等. 三元空间大数据跨域可视化分析展望[J]. 信息与电子工程前沿(英文), 2021,22(12):1559-1564.
WEI CHEN, TIANYE ZHANG, HAIYANG ZHU, et al. Perspectives on cross-domain visual analysis of cyber-physical-social big data. [J]. Frontiers of information technology & electronic engineering, 2021, 22(12): 1559-1564.
陈为, 张天野, 朱海洋, 等. 三元空间大数据跨域可视化分析展望[J]. 信息与电子工程前沿(英文), 2021,22(12):1559-1564. DOI: 10.1631/FITEE.2100553.
WEI CHEN, TIANYE ZHANG, HAIYANG ZHU, et al. Perspectives on cross-domain visual analysis of cyber-physical-social big data. [J]. Frontiers of information technology & electronic engineering, 2021, 22(12): 1559-1564. DOI: 10.1631/FITEE.2100553.
三元空间大数据一般定义为由其定义领域(包括数据、对象、任务、应用场景、主体等)所有元素组成的集合。可视分析是一种新兴的人在回路大数据分析范式,可利用人类感知提高人类认知效率。本文探讨三元空间大数据跨域可视化分析,强调三元空间大数据跨域性带来的新挑战——数据、主题和任务域,并提出一个新的可视分析模型和一套方法来应对这些挑战。
The domain of cyber-physical-social (CPS) big data is generally defined as the set consisting of all the elements in its defined domain
including domains of data
objects
tasks
application scenarios
and subjects. Visual analytics is an emerging human-in-the-loop big data analytics paradigm that can exploit human perception to enhance human cognitive efficiency. In this paper
we explore the perspectives on cross-domain visual analysis of CPS big data. We also highlight new challenges brought by the cross-domain nature of CPS big data—data
subject
and task domains—and propose a novel visual analytics model and a suite of approaches to address these challenges.
可视分析三元空间大数据跨域
M Aledhari, , R Razzak, , RM Parizi, , et al., . 2020. . Federated learning: a survey on enabling technologies, protocols, and applications. . IEEE Access, , 8:140699--140725. . doi: 10.1109/ACCESS.2020.3013541http://doi.org/10.1109/ACCESS.2020.3013541.
MQ Cao, , J Liang, , MZ Li, , et al., . 2020. . TDIVis: visual analysis of tourism destination images. . Front Inform Technol Electron Eng, , 21((4):):536--557. . doi: 10.1631/FITEE.1900631http://doi.org/10.1631/FITEE.1900631.
M Chegin, , J Bernard, , J Cui, , et al., . 2020. . Interactive visual labelling versus active learning: an experimental comparison. . Front Inform Technol Electron Eng, , 21((4):):524--535. . doi: 10.1631/FITEE.1900549http://doi.org/10.1631/FITEE.1900549.
DZ Deng, , J Wu, , JC Wang, , et al., . 2021. . EventAnchor: reducing human interactions in event annotation of racket sports videos. . Proc CHI Conf on Human Factors in Computing Systems, Article 73. , doi: 10.1145/3411764.3445431http://doi.org/10.1145/3411764.3445431.
L Giovannangeli, , R Bourqui, , R Giot, , et al., . 2020. . Toward automatic comparison of visualization techniques: application to graph visualization. . Vis Inform, , 4((2):):86--98. . doi: 10.1016/j.visinf.2020.04.002http://doi.org/10.1016/j.visinf.2020.04.002.
WB He, , JP Wang, , HQ Guo, , et al., . 2020. . CECAV-DNN: collective ensemble comparison and visualization using deep neural networks. . Vis Inform, , 4((2):):109--121. . doi: 10.1016/j.visinf.2020.04.004http://doi.org/10.1016/j.visinf.2020.04.004.
DY Liu, , D Weng, , YH Li, , et al., . 2017. . SmartAdP: visual analytics of large-scale taxi trajectories for selecting billboard locations. . IEEE Trans Vis Comput Graph, , 23((1):):1--10. . doi: 10.1109/TVCG.2016.2598432http://doi.org/10.1109/TVCG.2016.2598432.
KL Ma, , HW Shen, . 2020. . Foreword to the Special Issue on PacificVis 2020 Workshop on Visualization Meets AI. . Vis Inform, , 4((2):):71. doi: 10.1016/j.visinf.2020.04.007http://doi.org/10.1016/j.visinf.2020.04.007.
RX Ma, , HH Mei, , HH Guan, , et al., . 2021. . LADV: deep learning assisted authoring of dashboard visualizations from images and sketches. . IEEE Trans Vis Comput Graph, , 27((9):):3717--3732. . doi: 10.1109/TVCG.2020.2980227http://doi.org/10.1109/TVCG.2020.2980227.
J Manyika, , M Chui, , B Brown, , et al., . 2011. . Big Data: the Next Frontier for Innovation, Competition, and Productivity. , McKinsey Global Institute, ..
LH Meng, , YT Wei, , RS Pan, , et al., . 2021. . VADAF: visualization for abnormal client detection and analysis in federated learning. . ACM Trans Interact Intell Syst, , 11((3-4):):26. doi: 10.1145/3426866http://doi.org/10.1145/3426866.
T Munzner, . 2014. . Visualization Analysis and Design. , CRC Press, , :New York, USA. doi: 10.1201/b17511http://doi.org/10.1201/b17511.
JC Pan, , DM Han, , FZ Guo, , et al., . 2020. . RCAnalyzer: visual analytics of rare categories in dynamic networks. . Front Inform Technol Electron Eng, , 21((4):):491--506. . doi: 10.1631/FITEE.1900310http://doi.org/10.1631/FITEE.1900310.
G Schirner, , D Erdogmus, , K Chowdhury, , et al., . 2013. . The future of human-in-the-loop cyber-physical systems. . Computer, , 46((1):):36--45. . doi: 10.1109/MC.2013.31http://doi.org/10.1109/MC.2013.31.
T Tang, , S Rubab, , JW Lai, , et al., . 2019. . iStoryline: effective convergence to hand-drawn storylines. . IEEE Trans Vis Comput Graph, , 25((1):):769--778. . doi: 10.1109/TVCG.2018.2864899http://doi.org/10.1109/TVCG.2018.2864899.
T Tang, , RZ Li, , XK Wu, , et al., . 2021. . PlotThread: creating expressive storyline visualizations using reinforcement learning. . IEEE Trans Vis Comput Graph, , 27((2):):294--303. . doi: 10.1109/TVCG.2020.3030467http://doi.org/10.1109/TVCG.2020.3030467.
K Umbleja, , M Ichino, , H Yaguchi, . 2020. . Improving symbolic data visualization for pattern recognition and knowledge discovery. . Vis Inform, , 4((1):):23--31. . doi: 10.1016/j.visinf.2019.12.003http://doi.org/10.1016/j.visinf.2019.12.003.
FY Wang, . 2010. . The emergence of intelligent enterprises: from CPS to CPSS. . IEEE Intell Syst, , 25((4):):85--88. . doi: 10.1109/MIS.2010.104http://doi.org/10.1109/MIS.2010.104.
XM Wang, , JK Chou, , W Chen, , et al., . 2018. . A utility-aware visual approach for anonymizing multi-attribute tabular data. . IEEE Trans Vis Comput Graph, , 24((1):):351--360. . doi: 10.1109/TVCG.2017.2745139http://doi.org/10.1109/TVCG.2017.2745139.
XM Wang, , W Chen, , JK Chou, , et al., . 2019. . GraphProtector: a visual interface for employing and assessing multiple privacy preserving graph algorithms. . IEEE Trans Vis Comput Graph, , 25((1):):193--203. . doi: 10.1109/TVCG.2018.2865021http://doi.org/10.1109/TVCG.2018.2865021.
XM Wang, , W Chen, , JZ Xia, , et al., . 2020a. . ConceptExplorer: visual analysis of concept drifts in multi-source time-series data. . IEEE Conf on Visual Analytics Science and Technology, p., 1--11. . doi: 10.1109/VAST50239.2020.00006http://doi.org/10.1109/VAST50239.2020.00006.
XM Wang, , CJ Bryan, , YR Li, , et al., . 2020b. . Umbra: a visual analysis approach for defense construction against inference attacks on sensitive information. . IEEE Trans Vis Comput Graph, , early access. doi: 10.1109/TVCG.2020.3037670http://doi.org/10.1109/TVCG.2020.3037670.
D Weng, , HM Zhu, , J Bao, , et al., . 2018. . Homefinder revisited: finding ideal homes with reachability-centric multi-criteria decision making. . Proc CHI Conf on Human Factors in Computing Systems, Article 247. , doi: 10.1145/3173574.3173821http://doi.org/10.1145/3173574.3173821.
L Xu, . 2020. . Learning deep IA bidirectional intelligence. . Front Inform Technol Electron Eng, , 21((4):):558--562. . doi: 10.1631/FITEE.1900541http://doi.org/10.1631/FITEE.1900541.
TY Zhang, , HZ Feng, , W Chen, , et al., . 2021. . ChartNavigator: an interactive pattern identification and annotation framework for charts. . IEEE Trans Knowl Data Eng, , early access. doi: 10.1109/TKDE.2021.3094236http://doi.org/10.1109/TKDE.2021.3094236.
ZH Zhou, . 2016. . Machine Learning. , Tsinghua University Press, , :Beijing, China(in Chinese)..
SJ Zhu, , GD Sun, , Q Jiang, , et al., . 2020. . A survey on automatic infographics and visualization recommendations. . Vis Inform, , 4((3):):24--40. . doi: 10.1016/j.visinf.2020.07.002http://doi.org/10.1016/j.visinf.2020.07.002.
关联资源
相关文章
相关作者
相关机构