FOLLOWUS
1.Department of Computer Science and Technology, Tsinhua University, Beijing 100084, China
2.National Digital Switching System Engineering & Technological R&D Center, Zhengzhou 450002, China
3.Purple Mountain Laboratories: Networking, Communications and Security, Nanjing 211111, China
[ "Xinsheng JI, first author of this invited paper, received his BE degree in Fudan University, Shanghai, China, in 1988, and his MS degree in PLA Information Engineering University, Zhengzhou, China, in 1991. He is currently a Chief Engineer of the China National Digital Switching System Engineering and Technological R&D Center (NDSC). He is a member of the National 6G Technology R&D General Expert Group, a Chief Scientist of the wireless security field of the Collaborative Innovation Center for Wireless Communication, a Deputy Director of the National Engineering Laboratory for Mobile Network Security, and an Academic Leader of the National Science Foundation Innovation Corps. He obtained the National Science and Technology Progress Award (First Prize) three times, and the National Science and Technology Progress Award for Innovation Team once. His major research interests include next-generation mobile communication and cyber space security." ]
[ "Jiangxing WU is an academician of the Chinese Academy of Engineering (CAE). He is a professor and doctoral supervisor and president of the China National Digital Switching System Engineering and Technological R&D Center (NDSC). Some other positions he held include: Vice Chairman of the National High-tech R&D Program (863 Program) from the Ninth-Five-Year Plan to the Tenth-Five-Year Plan, Vice Chairman of the Information Technology Experts Group of the 863 Program, Director of the National Major Mobile Communication Project Evaluation Commission, Director and Chief Engineer of the China Next Generation Broadcasting Network (NGB) Experts Commission, Vice Chairman of the 3Tnet in the Eleventh-Five-Year Plan. Since 2016, he has served as Vice Chairman of the Space-Earth Integration Network Experts Group of the National Key Scientific and Technological Project during the Thirteenth-Five-Year Plan. He obtained the National Science and Technology Progress Award (First Prize) three times. Some other awards granted to him include: the title of National Outstanding Scientific and Technological Worker in 1997, Outstanding Contribution Award of the National Science and Technology Research Program in 2001, the title of Young and Middle-Aged Experts with Outstanding Contributions in 2003, First-Level Prize of National Teaching Achievement in 2009, and the National Innovation Competition Award in 2017. The scientific research team he led won the National Science and Technology Progress Award for Innovation Team in 2015. His research interests include cyberspace security and network architecture." ]
[ "Kaizhi HUANG, corresponding author of this invited paper, received her BE degree in digital communication and MS degree in communication and information system in 1995 and 1998, respectively, from PLA Information Engineering University, and her PhD degree in communication and information system in 2003 from Tsinghua University. She is currently a professor of the China National Digital Switching System Engineering and Technological R&D Center (NDSC). She is an expert in the evaluation of national key R&D projects and NSFC projects, and won one National Science and Technology Progress and Innovation Team Award. Her research interests include wireless network security and signal processing." ]
纸质出版日期:2022-10,
收稿日期:2022-02-18,
修回日期:2022-09-30,
录用日期:2022-06-14
Scan QR Code
季新生, 邬江兴, 金梁, 等. 6G网络内生安全新范式探讨[J]. 信息与电子工程前沿(英文), 2022,23(10):1421-1450.
XINSHENG JI, JIANGXING WU, LIANG JIN, et al. Discussion on a new paradigm of endogenous security towards 6G networks. [J]. Frontiers of information technology & electronic engineering, 2022, 23(10): 1421-1450.
季新生, 邬江兴, 金梁, 等. 6G网络内生安全新范式探讨[J]. 信息与电子工程前沿(英文), 2022,23(10):1421-1450. DOI: 10.1631/FITEE.2200060.
XINSHENG JI, JIANGXING WU, LIANG JIN, et al. Discussion on a new paradigm of endogenous security towards 6G networks. [J]. Frontiers of information technology & electronic engineering, 2022, 23(10): 1421-1450. DOI: 10.1631/FITEE.2200060.
6G网络将面临更为复杂的内生安全问题,亟需提出新的普适性安全理论,建立新的实践规范,以应对网络空间“未知的未知”安全威胁。本文首先阐述了网络空间内生安全发展的新范式,介绍了6G网络安全的需求愿景。进而详细分析了6G核心网、无线接入网、新兴使能技术等面临的安全问题,以及相应的安全技术发展现状,分析了内生安全与传统安全的融合发展,进而给出网络空间内生安全新范式指导下的相关安全理论与技术构想。
The sixth-generation mobile communication (6G) networks will face more complex endogenous security problems
and it is urgent to propose new universal security theories and establish new practice norms to deal with the "unknown unknown" security threats in cyberspace. This paper first expounds the new paradigm of cyberspace endogenous security and introduces the vision of 6G cyberspace security. Then
it analyzes the security problems faced by the 6G core network
wireless access network
and emerging associated technologies in detail
as well as the corresponding security technology development status and the integrated development of endogenous security and traditional security. Furthermore
this paper describes the relevant security theories and technical concepts under the guidance of the new paradigm of endogenous security.
6G安全内生安全新范式核心网无线接入网
6G securityNew paradigm of endogenous securityCore networkWireless access network
3GPP, . 2019. . Technical Specification Group Services and Systems Aspects; Security Aspects; Study on the Support of 256-bit Algorithms for 5G (Release 16), TS 33.841 (V16.1.0). 3rd Generation Partnership Project, ..
A Acar, , H Aksu, , AS Uluagac, , et al., . 2019. . A survey on homomorphic encryption schemes: theory and implementation. . ACM Comput Surv, , 51((4):):79. doi: 10.1145/3214303https: //doi.org/10.1145/3214303.
XL An, , JJ Wu, , W Tong, , et al., . 2021. . 6G network architecture vision. . Joint European Conf on Networks and Communications & 6G Summit, p.. 592--597. . doi: 10.1109/EuCNC/6GSummit51104.2021.9482439https://doi.org/10.1109/EuCNC/6GSummit51104.2021.9482439.
C Benzaïd, , T Taleb, . 2020. . AI for beyond 5G networks: a cyber-security defense or offense enabler? . IEEE Netw, , 34((6):):140--147. . doi: 10.1109/MNET.011.2000088https: //doi.org/10.1109/MNET.011.2000088.
CCID Think Tank Radio, . 2020. . 6G Concept and Vision White Paper (. in Chinese). https://m.thepaper.cn/baijiahao_6596926https://m.thepaper.cn/baijiahao_6596926 [Accessed on , Mar. 18, 2020. ]..
CCSA, . 2021. . Research on Zero Trust Security Applied in Mobile Network (. in Chinese). https://www.ccsa.org.cn/https://www.ccsa.org.cn/ [Accessed on , June 20, 2021. ]..
SL Chen, , ZB Pang, , H Wen, , et al., . 2021. . Automated labeling and learning for physical layer authentication against clone node and Sybil attacks in industrial wireless edge networks. . IEEE Trans Ind Inform, , 17((3):):2041--2051. . doi: 10.1109/TII.2020.2963962https: //doi.org/10.1109/TII.2020.2963962.
C Cheng, , RX Lu, , A Petzoldt, , et al., . 2017. . Securing the Internet of Things in a quantum world. . IEEE Commun Mag, , 55((2):):116--120. . doi: 10.1109/MCOM.2017.1600522CMhttps: //doi.org/10.1109/MCOM.2017.1600522CM.
J Choi, , J Joung, , YS Cho, . 2022. . Artificial-noise-aided space-time line code for enhancing physical layer security of multiuser MIMO downlink transmission. . IEEE Syst J, , 16((1):):1289--1300. . doi: 10.1109/JSYST.2021.3075721https: //doi.org/10.1109/JSYST.2021.3075721.
CICT Mobile Communication Technology Co., Ltd., . 2021. . Global Coverage Scene Intelligent Connection—6G Scenes, Capabilities and Technologies Engine White Paper (V.2021) (. in Chinese). https://www.cict.com/portal/article/index/id/921/cid/13.htmlhttps://www.cict.com/portal/article/index/id/921/cid/13.html [Accessed on , Dec. 29, 2021. ]..
MR Cribbs, , RA Romero, , TT Ha, . 2021. . Alternative codes and phase rotation extensions for alternating space-time coding-based physical layer security. . IEEE Open J Commun Soc, , 2:1123--1143. . doi: 10.1109/OJCOMS.2021.3075910https: //doi.org/10.1109/OJCOMS.2021.3075910.
YY Dai, , K Zhang, , Y Zhang, . 2020. . Blockchain empowered 6G. . Chin J Int Things, , 4((1):):111--120 (. in Chinese). doi: 10.11959/j.issn.2096-3750.2020.00154https: //doi.org/10.11959/j.issn.2096-3750.2020.00154.
M D’Aquin, , P Troullinou, , NE O’Connor, , et al., . 2018. . Towards an “ethics by design” methodology for AI research projects. . Proc AAAI/ACM Conf on AI, Ethics, and Society, p.. 54--59. . doi: 110.1145/3278721.3278765https://doi.org/110.1145/3278721.3278765.
SS Dhanda, , B Singh, , P Jindal, . 2020. . Lightweight cryptography: a solution to secure IoT. . Wirel Pers Commun, , 112((3):):1947--1980. . doi: 10.1007/s11277-020-07134-3https: //doi.org/10.1007/s11277-020-07134-3.
O Dunkelman, , N Keller, , A Shamir, . 2014. . A practical-time related-key attack on the KASUMI cryptosystem used in GSM and 3G telephony. . J Cryptol, , 27((4):):824--849. . doi: 10.1007/s00145-013-9154-9https: //doi.org/10.1007/s00145-013-9154-9.
N Ebrahimi, , HS Kim, , D Blaauw, . 2021. . Physical layer secret key generation using joint interference and phase shift keying modulation. . IEEE Trans Microw Theory Techn, , 69((5):):2673--2685. . doi: 10.1109/TMTT.2021.3058183https: //doi.org/10.1109/TMTT.2021.3058183.
P Ekdahl, , T Johansson, , A Maximov, , et al., . 2019. . A new SNOW stream cipher called SNOW-V. . IACR Trans Symmetr Cryptol, , 2019((3):):1--42. . doi: 10.46586/tosc.v2019.i3.1-42https: //doi.org/10.46586/tosc.v2019.i3.1-42.
H Endo, , M Sasaki, . 2019. . Secret key agreement for satellite laser communications. Advances in Communications Satellite Systems. . 37th Int Communications Satellite Systems Conf, p.. 1--11. . doi: 10.1049/cp.2019.1258https://doi.org/10.1049/cp.2019.1258.
ETSI, . 2019. . 5G; Security Architecture and Procedures for 5G System. 3GPP TS 33.501 Version 15.5.0 Release 15, ..
BX Fang, , JQ Shi, , ZR Wang, , et al., . 2021. . AI-enabled cyberspace attacks: security risks and countermeasures. . Strat Study CAE, , 23((3):):60--66 (. in Chinese). doi: 10.15302/J-SSCAE-2021.03.002https: //doi.org/10.15302/J-SSCAE-2021.03.002.
H Fang, , XB Wang, , S Tomasin, . 2019. . Machine learning for intelligent authentication in 5G and beyond wireless networks. . IEEE Wirel Commun, , 26((5):):55--61. . doi: 10.1109/MWC.001.1900054https: //doi.org/10.1109/MWC.001.1900054.
DG Feng, , J Xu, . 2010. . Network Security Principle and Technology (, 2nd Ed.). Science Press, , :Beijing, China (in Chinese)..
TM Fernández-Caramés, . 2020. . From pre-quantum to post-quantum IoT security: a survey on quantum-resistant cryptosystems for the Internet of Things. . IEEE Int Things J, , 7((7):):6457--6480. . doi: 10.1109/JIOT.2019.2958788https: //doi.org/10.1109/JIOT.2019.2958788.
GP Fettweis, , H Boche, . 2021. . 6G: the personal tactile Internet—and open questions for information theory. . IEEE BITS Inform Theory Mag, , 1((1):):71--82. . doi: 10.1109/MBITS.2021.3118662https: //doi.org/10.1109/MBITS.2021.3118662.
F Gao, , JJ Xia, , F Zhang, . 2021. . Security vision of 6G network. . Des Techn Posts Telecommun, (, (8):):29--33 (. in Chinese). doi: 10.12045/j.issn.1007-3043.2021.08.007https: //doi.org/10.12045/j.issn.1007-3043.2021.08.007.
IJ Goodfellow, , J Shlens, , C Szegedy, . 2015. . Explaining and harnessing adversarial examples. . https://arxiv.org/abs/1412.6572https://arxiv.org/abs/1412.6572, .
Gray J, . 2009. . Jim Gray on eScience: a Transformed Scientific Method. . http://katzcommunications.com/pdfs/fourthparadigm.pdfhttp://katzcommunications.com/pdfs/fourthparadigm.pdf [Accessed on , June 29, 2021. ]..
ZT Guan, , X Zhou, , P Liu, , et al., . 2022. . A blockchain-based dual-side privacy-preserving multiparty computation scheme for edge-enabled smart grid. . IEEE Int Things J, , 9((16):):14287--14299. . doi: 10.1109/JIOT.2021.3061107https: //doi.org/10.1109/JIOT.2021.3061107.
X Han, , Y Yuan, , FY Wang, . 2019. . Security problems on blockchain: the state of the art and future trends. . Acta Autom Sin, , 45((1):):206--225. . doi: 10.16383/j.aas.c180710https: //doi.org/10.16383/j.aas.c180710.
YZ Han, , G Huang, , SJ Song, , et al., . 2021. . Dynamic neural networks: a survey. . IEEE Trans Patt Anal Mach Intell, , 44((11):):7436--7456. . doi: 10.1109/TPAMI.2021.3117837https: //doi.org/10.1109/TPAMI.2021.3117837.
G Hatzivasilis, , K Fysarakis, , I Papaefstathiou, , et al., . 2018. . A review of lightweight block ciphers. . J Cryptogr Eng, , 8((2):):141--184. . doi: 10.1007/s13389-017-0160-yhttps: //doi.org/10.1007/s13389-017-0160-y.
Hexa-X, . 2020. . Hexa-X. . https://hexa-x.euhttps://hexa-x.eu [Accessed on , Dec. 8, 2020. ]..
YX Hu, , P Yi, , PH Sun, , et al., . 2019. . Research on the full-dimensional defined polymorphic smart network. . J Commun, , 40((8):):1--12 (. in Chinese). doi: 10.11959/j.issn.1000-436x.2019192https: //doi.org/10.11959/j.issn.1000-436x.2019192.
KZ Huang, , L Jin, , YJ Chen, , et al., . 2020. . Development of wireless physical layer key generation technology and new challenges. . J Electron Inform Technol, , 42((10):):2330--2341. . doi: 10.11999/JEIT200002https: //doi.org/10.11999/JEIT200002.
IMT-2030 (6G) Promotion Group, . 2021. . 6G Network Security Vision Technologies Research Report (. in Chinese)..
Internet Engineering Task Force, . 2019. . Postquantum Preshared Keys for IKEv2 draft-ietf-ipsecme-qr-ikev2-08. . https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-qr-ikev2-08https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-qr-ikev2-08 [Accessed on , Nov. 5, 2019. ]..
Y Jiang, , XH Ge, , Y Yang, , et al., . 2020. . 6G oriented blockchain based Internet of Things data sharing and storage mechanism. . J Commun, , 41((10):):48--58 (. in Chinese). doi: 10.11959/j.issn.1000-436x.2020211https: //doi.org/10.11959/j.issn.1000-436x.2020211.
L Jin, , YM Lou, , XM Xu, , et al., . 2020. . Separating multi-stream signals based on space-time isomerism. . Int Conf on Wireless Communications and Signal Processing, p.. 418--423. . doi: 10.1109/WCSP49889.2020.9299669https://doi.org/10.1109/WCSP49889.2020.9299669.
L Jin, , YM Lou, , XL Sun, , et al., . 2021a. . Concept and vision of 6G wireless endogenous safety and security. . Sci Sin Inform, , early access (in Chinese). doi: 10.1360/SSI-2021-0095https: //doi.org/10.1360/SSI-2021-0095.
L Jin, , XY Hu, , YM Lou, , et al., . 2021b. . Introduction to wireless endogenous security and safety: problems, attributes, structures and functions. . China Commun, , 18((9):):88--99. . doi: 10.23919/JCC.2021.09.008https: //doi.org/10.23919/JCC.2021.09.008.
S Kariyappa, , MK Qureshi, . 2019. . Improving adversarial robustness of ensembles with diversity training. . https://doi.org/10.48550/arxiv.1901.09981https://doi.org/10.48550/arxiv.1901.09981, .
TS Kuhn, . 1996. . The Structure of Scientific Revolutions. , University of Chicago Press, , :Chicago, USA..
H Kumarage, , I Khalil, , A Alabdulatif, , et al., . 2016. . Secure data analytics for cloud-integrated Internet of Things applications. . IEEE Cloud Comput, , 3((2):):46--56. . doi: 10.1109/MCC.2016.30https: //doi.org/10.1109/MCC.2016.30.
C Li, , B Lei, , CF Xie, , et al., . 2019. . Trustworthy network based on blockchain technology. . Telecommun Sci, , 35((10):):60--68 (. in Chinese). doi: 10.11959/j.issn.1000-0801.2019226https: //doi.org/10.11959/j.issn.1000-0801.2019226.
GY Li, , C Sun, , EA Jorswieck, , et al., . 2021. . Sum secret key rate maximization for TDD multi-user massive MIMO wireless networks. . IEEE Trans Inform Forens Secur, , 16:968--982. . doi: 10.1109/TIFS.2020.3026466https: //doi.org/10.1109/TIFS.2020.3026466.
HQ Li, , J Li, . 2001. . Computer Network Security and Encryption Technology. , Science Press, , :Beijing, China (in Chinese)..
JF Li, , YX Hu, , P Yi, , et al., . 2020. . Development roadmap of polymorphic intelligence network technology toward 2035. . Strat Study CAE, , 22((3):):141--147 (. in Chinese). doi: 10.15302/J-SSCAE-2019.11.010https: //doi.org/10.15302/J-SSCAE-2019.11.010.
YX Li, , B Cao, , MG Peng, , et al., . 2020. . Direct acyclic graph-based ledger for Internet of Things: performance and security analysis. . IEEE ACM Trans Netw, , 28((4):):1643--1656. . doi: 10.1109/TNET.2020.2991994https: //doi.org/10.1109/TNET.2020.2991994.
YC Liang, , J Chen, , RZ Long, , et al., . 2021. . Reconfigurable intelligent surfaces for smart wireless environments: channel estimation, system design and applications in 6G networks. . Sci China Inform Sci, , 64:200301. doi: 10.1007/s11432-020-3261-5https: //doi.org/10.1007/s11432-020-3261-5.
GR Liu, , J Shen, , JP Bai, . 2021. . A definable 6G security architecture. . Mob Commun, , 45((4):):54--57 (. in Chinese). doi: 10.3969/j.issn.1006-1010.2021.04.009https: //doi.org/10.3969/j.issn.1006-1010.2021.04.009.
JH Liu, . 2020. . Research on security improvement of 5G core network based on zero trust architecture. . Des Techn Posts Telecommun, (, (9):):75--78 (. in Chinese). doi: 10.12045/j.issn.1007-3043.2020.09.015https: //doi.org/10.12045/j.issn.1007-3043.2020.09.015.
LS Liu, , ML Yu, , Z Yan, . 2009. . A Concise Course on Advanced Quantum Mechanics. , Science Press, , :Beijing, China (in Chinese)..
Y Liu, , MG Peng, . 2020. . 6G endogenous security: architecture and key technologies. . Telecommun Sci, , 36((1):):11--20 (. in Chinese). doi: 10.11959/j.issn.1000-0801.2020011https: //doi.org/10.11959/j.issn.1000-0801.2020011.
F Loukil, , C Ghedira-Guegan, , K Boukadi, , et al., . 2021. . Privacy-preserving IoT data aggregation based on blockchain and homomorphic encryption. . Sensors, , 21((7):):2452. doi: 10.3390/s21072452https: //doi.org/10.3390/s21072452.
S Manzuik, , A Gold, , C Gatford, . 2006. . Network Security Assessment: from Vulnerability to Patch. , Elsevier, , :Amsterdam, the Netherlands. doi: 10.1016/B978-1-59749-101-3.X5000-9https: //doi.org/10.1016/B978-1-59749-101-3.X5000-9.
Ministry of Internal Affairs and Communications (MIC), . 2020. . Beyond 5G Promotion Strategy—Roadmap Towards 6G. . https://www.soumu.go.jp/englishhttps://www.soumu.go.jp/english [Accessed on , June 30, 2020. ]..
National Institute of Standards and Technology (NIST), . 2020. . Status Report on the Second Round of the NIST Post-Quantum Cryptography Standardization Process. . https://www.nist.govhttps://www.nist.gov [Accessed on , July 22, 2020. ]..
National Institute of Standards and Technology (NIST), . 2021. . Lightweight Cryptography. . https://csrc.nist.gov/Projects/lightweight-cryptographyhttps://csrc.nist.gov/Projects/lightweight-cryptography [Accessed on , July 11, 2021. ]..
National Science Foundation (NSF), . 2021. . Resilient & Intelligent NextG Systems (RINGS). . https://www.nsf.gov/pubs/2021/nsf21581/nsf21581.pdfhttps://www.nsf.gov/pubs/2021/nsf21581/nsf21581.pdf [Accessed on , Apr. 30, 2021. ]..
Network Working Group, . 2019. . Design Issues for Hybrid Key Exchange in TLS 1.3. . https://datatracker.ietf.org/doc/html/draft-stebila-tls-hybrid-design-01https://datatracker.ietf.org/doc/html/draft-stebila-tls-hybrid-design-01 [Accessed on , Mar. 11, 2019. ]..
Next G Alliance, . 2022. . Roadmap to 6G: Building the Foundation for North American Leadership in 6G and Beyond. . https://roadmap.nextgalliance.org/https://roadmap.nextgalliance.org/ [Accessed on , Feb. 1, 2022. ]..
VL Nguyen, , PC Lin, , BC Cheng, , et al., . 2021. . Security and privacy for 6G: a survey on prospective technologies and challenges. . IEEE Commun Surv Tutor, , 23((4):):2384--2428. . doi: 10.1109/COMST.2021.3108618https: //doi.org/10.1109/COMST.2021.3108618.
KJ Nie, , B Cao, , MG Peng, . 2020. . 6G endogenous security: blockchain technology. . Telecommun Sci, , 36((1):):21--27 (. in Chinese). doi: 10.11959/j.issn.1000-0801.2020004https: //doi.org/10.11959/j.issn.1000-0801.2020004.
TY Pang, , K Xu, , D Chao, , et al., . 2019. . Improving adversarial robustness via promoting ensemble diversity. . Proc 36th Int Conf on Machine Learning, p.. 4970--4979. ..
JB Perazzone, , PL Yu, , BM Sadler, , et al., . 2021. . Artificial noise-aided MIMO physical layer authentication with imperfect CSI. . IEEE Trans Inform Forens Secur, , 16:2173--2185. . doi: 10.1109/TIFS.2021.3050599https: //doi.org/10.1109/TIFS.2021.3050599.
P Porambage, , G Gür, , DPM Osorio, , et al., . 2021. . 6G security challenges and potential solutions. . Joint European Conf on Networks and Communications & 6G Summit, p.. 622--627. . doi: 10.1109/EuCNC/6GSummit51104.2021.9482609https://doi.org/10.1109/EuCNC/6GSummit51104.2021.9482609.
Research Institute of China Mobile Communication Co., Ltd. (CMC), . 2020. . 2030 + Vision and Requirements Report (. in Chinese). https://www.baogaoting.com/info/19757https://www.baogaoting.com/info/19757 [Accessed on , Nov. 10, 2020. ]..
Research Institute of China Mobile Communication Co., Ltd. (CMC), . 2021. . China Unicom 6G White Paper (V1.0) (. in Chinese). https://copyfuture.com/blogs-details/20210724061236033yhttps://copyfuture.com/blogs-details/20210724061236033y [Accessed on , Mar. 22, 2021. ]..
Samsung, . 2020. . 6G the Next Hyper Connected Experience for All. . https://cdn.codeground.org/nsr/downloads/researchareas/6G%20Vision.pdfhttps://cdn.codeground.org/nsr/downloads/researchareas/6G%20Vision.pdf [Accessed on , July 21, 2020. ]..
M Sharif, , L Bauer, , MK Reiter, . 2019. . n-ML: mitigating adversarial examples via ensembles of topologically manipulated classifiers. . doi: 10.48550/arxiv.1912.09059https: //doi.org/10.48550/arxiv.1912.09059.
Y Siriwardhana, , P Porambage, , M Liyanage, , et al., . 2021. . AI and 6G security: opportunities and challenges. . Joint European Conf on Networks and Communications & 6G Summit, p.. 616--621. . doi: 10.1109/EuCNC/ 6GSummit51104.2021.9482503https://doi.org/10.1109/EuCNC/ 6GSummit51104.2021.9482503.
J Sönnerup, , M Hell, , M Sönnerup, , et al., . 2019. . Efficient hardware implementations of grain-128AEAD. . 20th Int Conf on Cryptology in India, p.. 495--513. . doi: 10.1007/978-3-030-35423-7-25https://doi.org/10.1007/978-3-030-35423-7-25.
L Su, , XJ Zhuang, , HT Du, . 2022. . Built-in security framework research for 6G network. . Sci Sin Inform, , 52((2):):205--216 (. in Chinese). doi: 10.1360/SSI-2021-0257https: //doi.org/10.1360/SSI-2021-0257.
YY Sun, , JJ Liu, , JD Wang, , et al., . 2020. . When machine learning meets privacy in 6G: a survey. . IEEE Commun Surv Tutor, , 22((4):):2694--2724. . doi: 10.1109/COMST.2020.3011561https: //doi.org/10.1109/COMST.2020.3011561.
Synopsys, . 2020. . 2020 Open Source Security and Risk Analysis Report. , Synopsys, , :Mountain View, USA..
MS Turan, , KA McKay, , C Calik, , et al., . 2019. . Status Report on the First Round of the NIST Lightweight Cryptography Standardization Process. . doi: 10.6028/NIST.IR.8268https://doi.org/10.6028/NIST.IR.8268.
Vampire, . 2016. . eBACS: ECRYPT Benchmarking of Cryptographic Systems. . http://bench.cr.yp.to/ebaead.htmlhttp://bench.cr.yp.to/ebaead.html [Accessed on , July 15, 2021. ]..
JH Wang, , XT Ling, , YW Le, , et al., . 2021. . Blockchain-enabled wireless communications: a new paradigm towards 6G. . Nat Sci Rev, , 8((9):):nwab069. doi: 10.1093/nsr/nwab069https: //doi.org/10.1093/nsr/nwab069.
H Wu, . 2009. . Network Security: Attack and Defense. , China Machinery Industry Press, , :Beijing, China (in Chinese)..
JX Wu, . 2018a. . Polymorphic smart network and endogenous safety and security. . Civil-Mil Integr Cybersp, (, (11):):11--14 (. in Chinese)..
JX Wu, . 2018b. . Principle of Cyberspace Mimic Defense—Generalized Robust Control and Endogenous Security (, 2nd Ed.). Science Press, , :Beijing, China (in Chinese)..
JX Wu, . 2020a. . Cyberspace Endogenous Safety and Security—Mimic Defense and Generalized Robust Control. , Science Press, , :Beijing, China (in Chinese)..
JX Wu, . 2020b. . Cyberspace Mimic Defense: Generalized Robust Control and Endogenous Security. , Springer, , :Cham, Switzerland. doi: 10.1007/978-3-030-29844-9https://doi.org/10.1007/978-3-030-29844-9.
JX Wu, . 2022. . Development paradigms of cyberspace endogenous safety and security. . Sci Sin Inform, , 52((2):):189--204 (. in Chinese). doi: 10.1360/SSI-2021-0272https: //doi.org/10.1360/SSI-2021-0272.
JX Wu, , YX Hu, . 2021. . The development paradigm of separation between network technical system and supporting environment. . Inform Commun Technol Pol, , 47((8):):1--11 (. in Chinese). doi: 10.12267/j.issn.2096-5931.2021.08.001https: //doi.org/10.12267/j.issn.2096-5931.2021.08.001.
W Wu, , P Qin, , X Feng, , et al., . 2017. . Reflections on the development and construction of space-ground integration information network. . Telecommun Sci, , 33((12):):2017342 (in Chinese). doi: 10.11959/j.issn.1000-0801.2017342https: //doi.org/10.11959/j.issn.1000-0801.2017342.
N Xie, , TX Hu, . 2021. . Improving the covertness in the physical-layer authentication. . China Commun, , 18((3):):122--131. . doi: 10.23919/JCC.2021.03.010https: //doi.org/10.23919/JCC.2021.03.010.
HR Yang, , JY Zhang, , HL Dong, , et al., . 2020. . DVERGE: diversifying vulnerabilities for enhanced robust generation of ensembles. . Proc 34th Int Conf on Neural Information Processing Systems, . Article 462..
J Yang, , T Johansson, . 2020. . An overview of cryptographic primitives for possible use in 5G and beyond. . Sci China Inform Sci, , 63((12):):220301. doi: 10.1007/s11432-019-2907-4https: //doi.org/10.1007/s11432-019-2907-4.
J Yang, , T Johansson, , A Maximov, . 2019. . Vectorized linear approximations for attacks on SNOW 3G. . IACR Trans Symmetr Cryptol, , 2019((4):):249--271. . doi: 10.46586/tosc.v2019.i4.249-271https: //doi.org/10.46586/tosc.v2019.i4.249-271.
J Yang, , T Johansson, , A Maximov, . 2020. . Spectral analysis of ZUC-256. . IACR Trans Symmetr Cryptol, , 2020((1):):266--288. . doi: 10.46586/tosc.v2020.i1.266-288https: //doi.org/10.46586/tosc.v2020.i1.266-288.
P Yang, , Y Xiao, , M Xiao, , et al., . 2019. . 6G wireless communications: vision and potential techniques. . IEEE Netw, , 33((4):):70--75. . doi: 10.1109/MNET.2019.1800418https: //doi.org/10.1109/MNET.2019.1800418.
ZS Yin, , M Jia, , N Cheng, , et al., . 2022. . UAV-assisted physical layer security in multi-beam satellite-enabled vehicle communications. . IEEE Trans Intell Transp Syst, , 23((3):):2739--2751. . doi: 10.1109/TITS.2021.3090017https: //doi.org/10.1109/TITS.2021.3090017.
M Ylianttila, , R Kantola, , A Gurtov, , et al., . 2020. . 6G white paper: research challenges for trust, security and privacy. . https://arxiv.org/abs/2004.11665https://arxiv.org/abs/2004.11665, .
W You, , YL Li, , Y Bai, , et al., . 2020. . Research on endogenous safety and security technology of 5G core network. . Radio Commun Technol, , 46((4):):385--390 (. in Chinese). doi: 10.3969/j.issn.1003-3114.2020.04.003https: //doi.org/10.3969/j.issn.1003-3114.2020.04.003.
XH You, , CX Wang, , J Huang, , et al., . 2021. . Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. . Sci China Inform Sci, , 64((1):):110301. doi: 10.1007/s11432-020-2955-6https: //doi.org/10.1007/s11432-020-2955-6.
CL Zhang, , YL Fu, , H Li, , et al., . 2021. . Research on security scenarios and security models for 6G networking. . Chin J Netw Inform Secur, , 7((1):):28--45 (. in Chinese). doi: 10.11959/j.issn.2096-109x.2021004https: //doi.org/10.11959/j.issn.2096-109x.2021004.
CW Zhang, , J Yue, , LB Jiao, , et al., . 2021. . A novel physical layer encryption algorithm for LoRa. . IEEE Commun Lett, , 25((8):):2512--2516. . doi: 10.1109/LCOMM.2021.3078669https: //doi.org/10.1109/LCOMM.2021.3078669.
J Zhang, , J Xiong, , DT Ma, . 2014. . Physical layer secure transmission algorithm in multi-beam satellite communication system. . Appl Electron Technol, , 40((11):):116--119 (. in Chinese). doi: 10.3969/j.issn.0258-7998.2014.11.045https: //doi.org/10.3969/j.issn.0258-7998.2014.11.045.
YS Zhang, , AR Mi, . 2003. . Analysis of Computer Viruses and Trojan Horse Programs. , Kehai Electronic Press, , :Beijing, China (in Chinese)..
YY Zhang, , YL Shen, , XH Jiang, , et al., . 2022. . Secure millimeter-wave ad hoc communications using physical layer security. . IEEE Trans Inform Forens Secur, , 17:99--114. . doi: 10.1109/TIFS.2021.3054507https: //doi.org/10.1109/TIFS.2021.3054507.
C Zhao, , SN Zhao, , MH Zhao, , et al., . 2019. . Secure multi-party computation: theory, practice and applications. . Inform Sci, , 476:357--372. . doi: 10.1016/j.ins.2018.10.024https: //doi.org/10.1016/j.ins.2018.10.024.
V Ziegler, , P Schneider, , H Viswanathan, , et al., . 2021. . Security and trust in the 6G era. . IEEE Access, , 9:142314--142327. . doi: 10.1109/ACCESS.2021.3120143https: //doi.org/10.1109/ACCESS.2021.3120143.
ZTE Corporation, , China Academy of Information and Communications Technology, , China Mobile Communications Group Co., Ltd., , et al., . 2021. . Vision of Intrinsic Cybersecurity Beyond 2030. . https://www.zte.com.cn/mediares/zte/Files/PDF/white_book/202106281137.pdfhttps://www.zte.com.cn/mediares/zte/Files/PDF/white_book/202106281137.pdf [Accessed on , June 28, 2021. ]..
关联资源
相关文章
相关作者
相关机构