FOLLOWUS
1.State Key Lab of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China
2.Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 210096, China
3.Purple Mountain Laboratories, Nanjing 211111, China
E-mail: yuyancao@aa.seu.edu.cn
zjguo@seu.edu.cn
‡Corresponding author
纸质出版日期:2022-10-0 ,
收稿日期:2022-03-27,
修回日期:2022-09-15,
Scan QR Code
曹羽艳, 郭子均, 郝张成. 具有高隔离度的毫米波平面双极化共口径阵列天线[J]. 信息与电子工程前沿(英文版), 2022,23(10):1568-1578.
YUYAN CAO, ZIJUN GUO, ZHANGCHENG HAO. Planar dual-polarized millimeter-wave shared-aperture array antenna with high band isolation. [J]. Frontiers of information technology & electronic engineering, 2022, 23(10): 1568-1578.
曹羽艳, 郭子均, 郝张成. 具有高隔离度的毫米波平面双极化共口径阵列天线[J]. 信息与电子工程前沿(英文版), 2022,23(10):1568-1578. DOI: 10.1631/FITEE.2200122.
YUYAN CAO, ZIJUN GUO, ZHANGCHENG HAO. Planar dual-polarized millimeter-wave shared-aperture array antenna with high band isolation. [J]. Frontiers of information technology & electronic engineering, 2022, 23(10): 1568-1578. DOI: 10.1631/FITEE.2200122.
本文提出并设计了一种毫米波平面共口径阵列天线。通过集成基板集成波导(SIW)和带状线激励网络,将K波段天线嵌入至Ka波段天线内部。通过共享辐射口径减小天线尺寸,降低其剖面高度。所设计的Ka波段天线通过SIW腔体表面的一对平行缝隙辐射水平极化波,而K波段天线通过SIW腔体表面的蝴蝶结形缝隙辐射垂直极化波。两个波段的阵列天线可以共享物理口径进行辐射,且在两个频段都具有很好的隔离度。为了验证以上设计思想,我们设计了一款中心工作频率为19 GHz和30 GHz的8×8共口径阵列天线,并采用多层印刷电路板(PCB)技术进行加工制造。实测结果表明,该天线在K波段和Ka波段的−10 dB阻抗带宽分别为7.73%和大于20%,相应的隔离度分别高于60 dB和44 dB。所提出的共口径天线具有小尺寸、低剖面和高隔离度的优点,可应用于小型化毫米波无线通信系统。
A planar millimeter-wave shared-aperture array antenna is proposed and designed in this paper. By composing the substrate integrated waveguide (SIW) and the stripline
the K-band antenna is embedded inside the Ka-band antenna to achieve a smaller size and a low profile by sharing an aperture. The Ka-band antenna radiates through the parallel slot pairs on the surface of the SIW cavities with horizontal polarization
while the K-band antenna radiates through the butterfly-shaped slots with vertical polarization
which are also designed on the surface. Then the two array antennas can radiate by sharing a common aperture with high isolation. To verify this idea
a prototype of an 8×8 shared-aperture array antenna has been designed with center frequencies of 19 and 30 GHz and fabricated using multilayer printed circuit board (PCB) technology. The measurement results show that the -10 dB impedance bandwidths in the K- and Ka-bands are 7.73% and >20%
and the corresponding isolations are higher than 60 and 44 dB
respectively. The proposed shared-aperture antenna has a small footprint
a low profile
and high isolation
and is a promising candidate to design compact millimeter-wave wireless systems.
共口径平面天线高隔离度基片集成波导
YJ Cheng, , J Wang, , XL Liu, . 2017. . 94 GHz substrate integrated waveguide dual-circular-polarization shared-aperture parallel-plate long-slot array antenna with low sidelobe level. . IEEE Trans Antenn Propag, , 65((11):):5855--5861. . https://doi.org/10.1109/TAP.2017.2754423https://doi.org/10.1109/TAP.2017.2754423, .
YR Ding, , YJ Cheng, . 2019. . Ku/Ka dual-band dual-polarized shared-aperture beam-scanning antenna array with high isolation. . IEEE Trans Antenn Propag, , 67((4):):2413--2422. . https://doi.org/10.1109/TAP.2019.2894270https://doi.org/10.1109/TAP.2019.2894270, .
M Ferrando-Rocher, , JI Herranz-Herruzo, , A Valero-Nogueira, , et al., . 2019. . Full-metal K-Ka dual-band shared-aperture array antenna fed by combined ridge-groove gap waveguide. . IEEE Antenn Wirel Propag Lett, , 18((7):):1463--1467. . https://doi.org/10.1109/LAWP.2019.2919928https://doi.org/10.1109/LAWP.2019.2919928, .
ZJ Guo, , ZC Hao, , HY Yin, , et al., . 2021. . Planar shared-aperture array antenna with a high isolation for millimeter-wave low Earth orbit satellite communication system. . IEEE Trans Antenn Propag, , 69((11):):7582--7592. . https://doi.org/10.1109/TAP.2021.3083786https://doi.org/10.1109/TAP.2021.3083786, .
KMJ Ho, , GM Rebeiz, . 2014. . Dual-band circularly-polarized microstrip antenna for Ku/Ka band statellite communication arrays. . Proc IEEE Antennas and Propagation Society Int Symp, p., 1831--1832. . https://doi.org/10.1109/APS.2014.6905242https://doi.org/10.1109/APS.2014.6905242, .
W Hong, , GR Yue, , XH Ge, , et al., . 2021. . High-throughput millimeter-wave wireless communications. . Front Inform Technol Electron Eng, , 22((4):):437--440. . https://doi.org/10.1631/FITEE.2120000https://doi.org/10.1631/FITEE.2120000, .
D Li, , JG Xu, , B Zhang, , et al., . 2015. . GCPW to stripline vertical transition for K-band applications in LTCC. . Asia-Pacific Microwave Conference, p.. 1--3. . https://doi.org/10.1109/APMC.2015.7413526https://doi.org/10.1109/APMC.2015.7413526, .
GQ Luo, , ZF Hu, , LX Dong, , et al., . 2008. . Planar slot antenna backed by substrate integrated waveguide cavity. . IEEE Antenn Wirel Propag Lett, , 7:236--239. . https://doi.org/10.1109/LAWP.2008.923023https://doi.org/10.1109/LAWP.2008.923023, .
CX Mao, , S Gao, , Y Wang, , et al., . 2017a. . A shared-aperture dual-band dual-polarized filtering-antenna-array with improved frequency response. . IEEE Trans Antenn Propag, , 65((4):):1836--1844. . https://doi.org/10.1109/TAP.2017.2670325https://doi.org/10.1109/TAP.2017.2670325, .
CX Mao, , S Gao, , Q Luo, , et al., . 2017b. . Low-cost X/Ku/Ka-band dual-polarized array with shared aperture. . IEEE Trans Antenn Propag, , 65((7):):3520--3527. . https://doi.org/10.1109/TAP.2017.2700161https://doi.org/10.1109/TAP.2017.2700161, .
CX Mao, , S Gao, , Y Wang, , et al., . 2017c. . Dual-band circularly polarized shared-aperture array for C-/X-band satellite communications. . IEEE Trans Antenn Propag, , 65((10):):5171--5178. . https://doi.org/10.1109/TAP.2017.2740981https://doi.org/10.1109/TAP.2017.2740981, .
S Mukherjee, . 2017. . Design of four-way substrate integrated coaxial line (SICL) power divider for K band applications. . Proc IEEE MTT-S Int Microwave and RF Conf, p., 1--4. . https://doi.org/10.1109/IMaRC.2017.8449663https://doi.org/10.1109/IMaRC.2017.8449663, .
K Naishadham, , RL Li, , L Yang, , et al., . 2013. . A shared-aperture dual-band planar array with self-similar printed folded dipoles. . IEEE Trans Antenn Propag, , 61((2):):606--613. . https://doi.org/10.1109/TAP.2012.2216491https://doi.org/10.1109/TAP.2012.2216491, .
ZH Qi, , XP Li, , H Zhu, . 2021. . Low-cost high-order-mode cavity backed slot array antenna using empty substrate integrated waveguide for the 5G n260 band. . Front Inform Technol Electron Eng, , 22((4):):609--614. . https://doi.org/10.1631/FITEE.2000503https://doi.org/10.1631/FITEE.2000503, .
AB Smolders, , RMC Mestrom, , ACF Reniers, , et al., . 2013. . A shared aperture dual-frequency circularly polarized micro. .
strip array antenna. . IEEE Antenn Wirel Propag Lett, , 12:120--123. . https://doi.org/10.1109/LAWP.2013.2242427https://doi.org/10.1109/LAWP.2013.2242427, .
MC Tao, , YW Wu, , ZC Hao, . 2021. . Compact orthogonal multiple-beam antenna with shared aperture. . IEEE Antenn Wirel Propag Lett, , 20((6):):873--877. . https://doi.org/10.1109/LAWP.2021.3060771https://doi.org/10.1109/LAWP.2021.3060771, .
K Wang, , XL Liang, , WR Zhu, , et al., . 2018. . A dual-wideband dual-polarized aperture-shared patch antenna with high isolation. . IEEE Antenn Wirel Propag Lett, , 17((5):):735--738. . https://doi.org/10.1109/LAWP.2018.2812699https://doi.org/10.1109/LAWP.2018.2812699, .
J Xu, , W Hong, , ZH Jiang, , et al., . 2020. . Low-cost millimeter-wave circularly polarized planar integrated magneto-electric dipole and its arrays with low-profile feeding structures. . IEEE Antenn Wirel Propag Lett, , 19((8):):1400--1404. . https://doi.org/10.1109/LAWP.2020.3002343https://doi.org/10.1109/LAWP.2020.3002343, .
LM Xu, , YT Wan, , D Yu, . 2019. . Research of dual-band dual circularly polarized wide-angle scanning phased array. . Proc IEEE 2nd Int Conf on Automation, Electronics and Electrical Engineering, p., 22--25. . https://doi.org/10.1109/AUTEEE48671.2019.9033428https://doi.org/10.1109/AUTEEE48671.2019.9033428, .
JD Zhang, , W Wu, , DG Fang, . 2016. . Dual-band and dual-circularly polarized shared-aperture array antennas with single-layer substrate. . IEEE Trans Antenn Propag, , 64((1):):109--116. . https://doi.org/10.1109/TAP.2015.2501847https://doi.org/10.1109/TAP.2015.2501847, .
JF Zhang, , YJ Cheng, , YR Ding, , et al., . 2019. . A dual-band shared-aperture antenna with large frequency ratio, high aperture reuse efficiency, and high channel isolation. . IEEE Trans Antenn Propag, , 67((2):):853--860. . https://doi.org/10.1109/TAP.2018.2882697https://doi.org/10.1109/TAP.2018.2882697, .
JF Zhang, , YJ Cheng, , YR Ding, . 2020. . An S- and V-band dual-polarized antenna based on dual-degenerate-mode feeder for large frequency ratio shared-aperture wireless applications. . IEEE Trans Antenn Propag, , 68((12):):8127--8132. . https://doi.org/10.1109/TAP.2020.2983769https://doi.org/10.1109/TAP.2020.2983769, .
Y Zhang, , ZN Chen, , XM Qing, , et al., . 2011. . Wideband millimeter-wave substrate integrated waveguide slotted narrow-wall fed cavity antennas. . IEEE Trans Antenn Propag, , 59((5):):1488--1496. . https://doi.org/10.1109/TAP.2011.2123055https://doi.org/10.1109/TAP.2011.2123055, .
HD Zhao, , ZX Wang, , HF Meng, . 2015. . A design of E/Ka dual-band patch antenna array with shared aperture. . Proc Asia-Pacific Microwave Conf, p.. 1--3. . https://doi.org/10.1109/APMC.2015.7413001https://doi.org/10.1109/APMC.2015.7413001, .
GN Zhou, , BH Sun, , QY Liang, , et al., . 2021. . Triband dual-polarized shared-aperture antenna for 2G/3G/4G/5G base station applications. . IEEE Trans Antenn Propag, , 69((1):):97--108. . https://doi.org/10.1109/TAP.2020.3016406https://doi.org/10.1109/TAP.2020.3016406, .
关联资源
相关文章
相关作者
相关机构