FOLLOWUS
1.Logistics Engineering College, Shanghai Maritime University, Shanghai 200135, China
2.School of Economics and Management, Beijing Jiaotong University, Beijing 102603, China
3.School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China
4.Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing 210044, China
5.Jiangsu Key Laboratory of Big Data Analysis Technology (B-DAT), Nanjing University of Information Science and Technology, Nanjing 210044, China
E-mail: lcx46@163.com;
Fuyy8652@163.com;
18458320@qq.com;
‡Corresponding author
纸质出版日期:2023-02-0 ,
收稿日期:2022-05-16,
录用日期:2022-08-23
Scan QR Code
李春喜, 傅莹颖, 崔向科, 等. 一种基于充电模式识别的电动汽车充电时间预测方法[J]. 信息与电子工程前沿(英文), 2023,24(2):299-313.
CHUNXI LI, YINGYING FU, XIANGKE CUI, et al. Dynamic time prediction for electric vehicle charging based on charging pattern recognition. [J]. Frontiers of information technology & electronic engineering, 2023, 24(2): 299-313.
李春喜, 傅莹颖, 崔向科, 等. 一种基于充电模式识别的电动汽车充电时间预测方法[J]. 信息与电子工程前沿(英文), 2023,24(2):299-313. DOI: 10.1631/FITEE.2200212.
CHUNXI LI, YINGYING FU, XIANGKE CUI, et al. Dynamic time prediction for electric vehicle charging based on charging pattern recognition. [J]. Frontiers of information technology & electronic engineering, 2023, 24(2): 299-313. DOI: 10.1631/FITEE.2200212.
电动汽车动力电池过度充电容易导致电池加速老化和严重的安全事故。因此,准确预测车辆充电时间对充电安全防护意义重大。由于电池组结构复杂,充电方式多样,传统方法因缺乏充电模式识别而预测精度不高。本文应用数据驱动和机器学习理论,提出一种新的基于充电模式识别的充电时间预测方法。首先,基于动态加权密度峰值聚类(DWDPC)和随机森林融合的智能算法对车辆充电模式进行分类;然后,采用改进的简化粒子群优化算法(ISPSO)和强跟踪滤波器(STF),对LSTM神经网络进行优化,构建了一种高性能的充电时间预测方法;最后,通过实际工程数据对所提出的ISPSO-LSTM-STF方法进行了验证。实验结果表明,该方法能够有效区分充电模式,提高了充电时间预测精度,具有实际工程意义。
Overcharging is an important safety issue in the charging process of electric vehicle power batteries
and can easily lead to accelerated battery aging and serious safety accidents. It is necessary to accurately predict the vehicle's charging time to effectively prevent the battery from overcharging. Due to the complex structure of the battery pack and various charging modes
the traditional charging time prediction method often encounters modeling difficulties and low accuracy. In response to the above problems
data drivers and machine learning theories are applied. On the basis of fully considering the different electric vehicle battery management system (BMS) charging modes
a charging time prediction method with charging mode recognition is proposed. First
an intelligent algorithm based on dynamic weighted density peak clustering (DWDPC) and random forest fusion is proposed to classify vehicle charging modes. Then
on the basis of an improved simplified particle swarm optimization (ISPSO) algorithm
a high-performance charging time prediction method is constructed by fully integrating long short-term memory (LSTM) and a strong tracking filter. Finally
the data run by the actual engineering system are verified for the proposed charging time prediction algorithm. Experimental results show that the new method can effectively distinguish the charging modes of different vehicles
identify the charging characteristics of different electric vehicles
and achieve high prediction accuracy.
充电模式充电时长随机森林长短期记忆网络(LSTM)简化粒子群优化算法(SPSO)
Charging modeCharging timeRandom forestLong short-term memory (LSTM)Simplified particle swarm optimization (SPSO)
Altché F, de la Fortelle A, 2017. An LSTM network for highway trajectory prediction. Proc IEEE 20th Int Conf on Intelligent Transportation Systems, p.353-359. doi: 10.1109/ITSC.2017.8317913http://doi.org/10.1109/ITSC.2017.8317913
Chang XQ, Song ZX, Wang JH, 2020. Electric vehicle charging load prediction and system development based on Monte Carlo algorithm. High Volt Appar, 56(8):1-5(in Chinese). doi: 10.13296/j.1001-1609.hva.2020.08.001http://doi.org/10.13296/j.1001-1609.hva.2020.08.001
Cheng SY, Lin PC, Lin PJ, 2019. New method of predict remaining charging time for lithium-ion batteries. Chin J Power Sources, 43(1):99-102, 135(in Chinese). doi: 10.3969/j.issn.1002-087X.2019.01.028http://doi.org/10.3969/j.issn.1002-087X.2019.01.028
Du MJ, Ding SF, Jia HJ, 2016. Study on density peaks clustering based on k-nearest neighbors and principal component analysis. Knowl-Based Syst, 99:135-145. doi: 10.1016/j.knosys.2016.02.001http://doi.org/10.1016/j.knosys.2016.02.001
Frendo O, Graf J, Gaertner N, et al., 2020. Data-driven smart charging for heterogeneous electric vehicle fleets. Energy AI, 1:100007. doi: 10.1016/j.egyai.2020.100007http://doi.org/10.1016/j.egyai.2020.100007
Ge QB, Guo C, Jiang HY, et al., 2022. Industrial power load forecasting method based on reinforcement learning and PSO-LSSVM. IEEE Trans Cybern, 52(2):1112-1124. doi: 10.1109/TCYB.2020.2983871http://doi.org/10.1109/TCYB.2020.2983871
Han T, Xu M, Lu YF, 2014. Charging Remaining Time Estimation Method, Device and Mobile Equipment. CN Patent 201210297383.4(in Chinese).
Hu W, Li ZS, 2007. A simpler and more effective particle swarm optimization algorithm. J Softw, 18(4):861-868(in Chinese). doi: 10.1360/jos180861http://doi.org/10.1360/jos180861
Huang TS, Wu SY, 2005. Enhanced particle swarm optimization algorithm based on Kalman filter principle. Comput Eng Appl, 41(35):56-58(in Chinese). doi: 10.3321/j.issn:1002-8331.2005.35.019http://doi.org/10.3321/j.issn:1002-8331.2005.35.019
Li B, Han R, He YG, et al., 2020. Applications of the improved random forest algorithm in fault diagnosis of motor bearings. Proc CSEE, 40(4):1310-1319(in Chinese). doi: https://doi.org/10.13334/j.0258-8013.pcsee.190501https://doi.org/10.13334/j.0258-8013.pcsee.190501
Li CX, Fu YY, Zhang JM, et al., 2020. Evaluation methods on charging safety for EV power battery. Proc 35th Youth Academic Annual Conf of Chinese Association of Automation, p.318-323. doi: 10.1109/YAC51587.2020.9337499http://doi.org/10.1109/YAC51587.2020.9337499
Li YY, 2020. Engineering Intelligent Kalman Filtering Method. MS Thesis, Hangzhou Dianzi University, Hangzhou, China(in Chinese). doi: https://doi.org/10.27075/d.cnki.ghzdc.2020.000227https://doi.org/10.27075/d.cnki.ghzdc.2020.000227
Lin PC, 2018. Tri-section SVR model for predicting charging time of lithium-ion batteries. Chin J Power Sources, 42(8):1155-1157, 1232(in Chinese). doi: 10.3969/j.issn.1002-087X.2018.08.019http://doi.org/10.3969/j.issn.1002-087X.2018.08.019
Liu B, 2020. Research of Short-Term Power Load Forecasting Based on PSO-LSTM Algorithm. MS Thesis, Jilin University, Jilin, China(in Chinese). doi: https://doi.org/10.27162/d.cnki.gjlin.2020.003369https://doi.org/10.27162/d.cnki.gjlin.2020.003369
Liu WW, Sang SB, Zhang HP, 2022. Study on improved heart sound classification model based on CNN+LSTM. Electron Des Eng, 30(2):38-42(in Chinese). doi: 10.14022/j.issn1674-6236.2022.02.009http://doi.org/10.14022/j.issn1674-6236.2022.02.009
Liu X, 2020. Prediction of Lithium Battery's Remaining Charging Time Based on IndyLSTM. MS Thesis, Xi’an University of Science and Technology, Xi’an, China(in Chinese). doi: https://doi.org/10.27397/d.cnki.gxaku.2020.000677https://doi.org/10.27397/d.cnki.gxaku.2020.000677
Liu YY, 2018. Research on modeling and simulation of detailed model of photovoltaic power generation system. Comput Knowl Technol, 14(10):221-224, 228(in Chinese). doi: 10.14004/j.cnki.ckt.2018.1153http://doi.org/10.14004/j.cnki.ckt.2018.1153
Rodriguez A, Laio A, 2014. Clustering by fast search and find of density peaks. Science, 344(6191):1492-1496. doi: 10.1126/science.1242072http://doi.org/10.1126/science.1242072
Roondiwala M, Patel H, Varma S, 2017. Predicting stock prices using LSTM. Int J Sci Res, 6(4):1754-1756.
Sun J, Chen SB, You PC, et al., 2021. Battery-assisted online operation of distributed data centers with uncertain workload and electricity prices. IEEE Trans Cloud Comput, early access. doi: 10.1109/TCC.2021.3132174http://doi.org/10.1109/TCC.2021.3132174
Wang ZL, Li J, Song YF, 2020. Improved K-means algorithm based on distance and weight. Comput Eng Appl, 56(23):87-94(in Chinese). doi: 10.3778/j.issn.1002-8331.2009-0103http://doi.org/10.3778/j.issn.1002-8331.2009-0103
Xu ZY, Kang Y, Cao Y, et al., 2019. Man-machine verification of mouse trajectory based on the random forest model. Front Inform Technol Electron Eng, 20(7):925-929. doi: 10.1631/FITEE.1700442http://doi.org/10.1631/FITEE.1700442
Yang QM, Liu GL, Bao YN, et al., 2022. Fault detection of wind turbine generator bearing using attention-based neural networks and voting-based strategy. IEEE/ASME Trans Mechatron, 27(5):3008-3018. doi: 10.1109/TMECH.2021.3127213http://doi.org/10.1109/TMECH.2021.3127213
Zhang QS, Zhao QC, 2020. Effects of overcharge cycling on the aging and safety of lithium ion batteries. High Volt Eng, 46(10):3390-3397(in Chinese). doi: 10.13336/j.1003-6520.hve.20200361http://doi.org/10.13336/j.1003-6520.hve.20200361
Zhang YF, Zhao ZD, Deng YJ, et al., 2021. ECGID: a human identification method based on adaptive particle swarm optimization and the bidirectional LSTM model. Front Inform Technol Electron Eng, 22(12):1641-1654. doi: 10.1631/FITEE.2000511http://doi.org/10.1631/FITEE.2000511
Zhou D, Song XH, Lu WB, et al., 2019. Real-time SOH estimation algorithm for lithium-ion batteries based on daily segment charging data. Proc CSEE, 39(1):105-111(in Chinese). doi: https://doi.org/10.13334/j.0258-8013.pcsee.181026https://doi.org/10.13334/j.0258-8013.pcsee.181026
Zhu XQ, Wang ZP, Wang C, et al., 2019. An experimental study on overcharge behaviors of lithium-ion power battery with LiNi0.6Co0.2Mn0.2O2 cathode. Automot Eng, 41(5):582-589(in Chinese). doi: 10.19562/j.chinasae.qcgc.2019.05.015http://doi.org/10.19562/j.chinasae.qcgc.2019.05.015
Zhu ZC, Zheng YJ, 2017. Prediction method of rechargeable electricity of vehicle battery at different temperature. Agric Equip Veh Eng, 55(8):1-5. doi: 10.3969/j.issn.1673-3142.2017.08.001http://doi.org/10.3969/j.issn.1673-3142.2017.08.001
关联资源
相关文章
相关作者
相关机构